Cho tam giác ABC cân tại A (góc A < 90 độ ). Vẽ BD vuông góc AC tại D ; CE vuông góc AB tại E . Gọi I là giao điểm của BD và CE . Chứng minh: a) tam giác BEC= tam giác CDB .
b) AD =AE .
c) AI là tia phân giác của góc BAC .
d) DE / /BC .
e) Gọi M là trung điểm của cạnh BC . Chứng minh ba điểm A ,I ,M thẳng hàng.
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
c: Ta có: ΔBEC=ΔCDB
nên \(\widehat{IBC}=\widehat{ICB}\)
hayΔIBC cân tại I
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó:ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
d: Xét ΔABC có AE/AB=AD/AC
nên DE//BC