Cho tam giác ABC có đường trung tuyến AM, D là điểm trên cạnh AB sao cho BD = 2DA; CD cắt AM tại I. CMR: DI = \(\frac{1}{4}\)DC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác DBC có :
DN=NC
CM=BM
suy ra: MN là đường trung bình của tam giác DBC
=> MN//BD
b) ta có MN//BD
=> MN//DI
mà AM=DN
suy ra I là trung điểm của AM
Xét \(\Delta BMI\)và \(\Delta CME\)có:
\(BM=CM\left(gt\right)\)
\(\widehat{BMI}=\widehat{CME}\) (đối đỉnh)
\(MI=ME\left(gt\right)\)
Do đó: \(\Delta BMI=\Delta CME\left(c.g.c\right)\)
Trong 2 tam giác bằng nhau, bạn phải viết đỉnh tương ứng thì mới đúng.
Chúc bạn học tốt.
a: Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//BD
hay MEDB là hình thang
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
a: Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//BD
hay MEDB là hình thang
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
a: Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//BD
Xét tứ giác BMED có EM//BD
nên BMED là hình thang
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM