K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 8 2018

Lời giải:

Kẻ đường cao $CH$ của hình thang.

Vì $ABCD$ là hình thang cân nên \(BH=\frac{AB-CD}{2}=\frac{26-10}{2}=8\)

\(AH=AB-BH=26-8=18\)

Theo công thức hệ thức lượng trong tam giác vuông, với tam giác vuông $ACB$ có đường cao $CH$ thì:

\(CH^2=AH.HB=8.18=144\Rightarrow CH=12\) (cm)

Diện tích $ABCD$ là:

\(S=\frac{(DC+AB).CH}{2}=\frac{(26+10).12}{2}=216\) (cm vuông)

Để tính diện tích hình thang ABCD, ta cần biết độ dài đường cao h của hình thang. Vì đường chéo AC vuông góc với BC, ta có thể sử dụng định lý Pythagoras để tính độ dài đường cao h.

Theo định lý Pythagoras, ta có:
AC^2 = AB^2 - BC^2
AC^2 = 26^2 - 10^2
AC^2 = 676 - 100
AC^2 = 576
AC = √576
AC = 24 cm

Vậy độ dài đường cao h của hình thang là 24 cm.

Tiếp theo, ta có công thức tính diện tích hình thang:
S = (AB + CD) * h / 2
S = (26 + 10) * 24 / 2
S = 36 * 24 / 2
S = 864 / 2
S = 432 cm^2

Vậy diện tích hình thang ABCD là 432 cm^2.

10 tháng 1 2017

2 đg chéo vuông góc vói nhau=>là hcn

dt hcn =dt ht cân

26x10=260 cm2

đ/s: 260 cm2

Ai tích mk mk sẽ tích lại

10 tháng 1 2017

đây là hình thang sao suy ra hcn đc

6 tháng 8 2022

Gửi bạn lời giải. Có gì sai sót thì bạn góp ý nhé!

Kẻ \(\)$\(CH \perp AB\)$ tại H, $\(DK \perp AB\)$ tại K.

Áp dụng định lí Pytago vào tam giác ABC vuông tại C, ta có:

$\(AC^2=AB^2-BC^2=26^2-10^2=576\)$

Áp dụng hệ thức lượng vào tam giác ABC vuông tại C với đường cao CH, ta có:

$\(\dfrac{1}{CH^2}=\dfrac{1}{DK^2}=\dfrac{1}{AC^2}+\dfrac{1}{BC^2}=\dfrac{1}{100}+\dfrac{1}{576}=\dfrac{169}{14400}\)$ (do ABCD là hình thang cân)

⇒ $\(CH^2=DK^2=\dfrac{14400}{169}\)$

⇒ $\(CH=DK=\dfrac{120}{13}\)$

Áp dụng định lí Pytago vào tam giác CHB vuông tại H và tam giác AKD vuông tại K có:

$\(BH^2=AK^2=10^2-\dfrac{14400}{169}=\dfrac{2500}{169}\)$ ⇒ $\(BH=AK=\dfrac{50}{13}cm\)$ Ta có: $\(AB=AK+HK+BH=AK+CD+HK\)$ ⇒ $\(CD=AB-AK-HK=26-\dfrac{100}{13}=\dfrac{238}{13}\)$

Ta có: $\({S}_{ABCD}=\dfrac{(AB+CD).AH}{2}=\dfrac{(26+\dfrac{238}{13}).\dfrac{120}{13}}{2}=\dfrac{34560}{169} cm^2\)$

20 tháng 8 2017

A B C 10cm D 26cm 17cm 17cm H K

Xét tam giác vuông \(AHC\)và  tam giác vuông \(BKD\)ta có:

\(AD=BC\left(gt\right)\)

\(\widehat{C}=\widehat{D}\left(gt\right)\)

\(\Rightarrow\)tam giác vuông AHD = tam giác vuông BKC ( cạnh huyền - góc nhọn )

=> HC=HD(2 cạnh tương ứng)

Ta có: \(HK=10cm\)

\(\Rightarrow HC=\frac{CD-HK}{2}=\frac{26-10}{2}=8cm\)

Áp dụng định lí Pytago trong tam giác vuông AHC:

\(AC^2=HC^2+AH^2\\ \Rightarrow AH^2=AC^2-HC^2\\ =289-64=225\\ \Rightarrow AH=\sqrt{225}=15cm\)

Vậy đường cao của hình thang ABCD là 15cm

25 tháng 8 2018

ai trả lời đc tui cho 1 acc liên quân cấp 30 có 16 tướng và 6 trang phục

25 tháng 8 2018

tự vẽ hình , k ib mk vẽ hình cho

a) 

xét tam giác AHD  vuông và  tam giác vuông BKC có AD=BC( hình thang cân )

góc D= góc C ( hình thang cân )

=> tam giác AHD = tam giác BKC ( trường ohjwp cạnh huyền canh góc vuông ) 

=> DH=CK 

b)

có AB//HK ; AH//BK (cùng vuông góc DC=>//) và AHK= 90 độ => ABKH là hcn => AB=HK=10cm và ABKH là hcn => AH=BK 

có DH+CK+HK=DC

=> mà DH=Ck => 2CK+HK=CD => 2CK+10=26=> 2CK=16=>CK=8 

có tam giác BKC vuông tại K => \(BK^2+KC^2=BC^2\)

=> \(BK^2=BC^2-KC^2\)

\(\Rightarrow BK^2=17^2-8^2\)

\(\Rightarrow BK^2=225\Rightarrow BK=15\)

mà BK=AH ( mình chứng minh ở trên r đó b lướt lên là thấy ) 

=> AH=15 

add acc lq nha  , k cần ,add đưa nik lq , >.< <3 

26 tháng 6 2019

Bạn tham khảo link sau :

Câu hỏi của Lâm Tinh Thần - Toán lớp 9 | Học trực tuyến

https://h.vn/hoi-dap/question/384503.html

Hk tốt 

26 tháng 6 2019

mình không hiểu đoạn AD=BC=10cm là ở đâu ra

3 tháng 12 2018

Gợi ý: Kẻ AH ^ CD tại H, kẻ BK ^ CD tại K

Tính được SABCD = 180cm2