Cho tam giác ABC cân tại A (A<90) ; Các đường cao BD ,CE cắt nhau tại H
a, CM tam giác ABD=ACE
b,CM tam giác BHC cân
c, So sánh HB và HD
d,Trên tia đối của tia EH lấy điểm N sao cho NH<HC;Trên tia đối của tia DH lấy điểm M sao Cho MH=NH.CM ba đường BN,AH,CM đồng quy.
CÁC BẠN GIÚP MÌNH LÀM CÂU D VỚI NHÉ.THANKS
#KThk2
Làm ý d thôi nha bn.
d. Gọi I là giao điểm của BN và CM:
Xét \(\Delta BNH\) và \(\Delta CMH\) có:
BH = CH (\(\Delta BHC\) cân tại H)
góc BHN = góc CHM(đối đỉnh)
NH = HM (gt)
=> \(\Delta BNH=\Delta CMH\left(c.g.c\right)\)
=> góc HBN = góc HCM
Lại có: góc HBC = góc HCB (câu b)
=> góc HBC + góc HBN = góc HCB + góc HCM
=> góc IBC = góc ICB
=> IBC cân tại I => IB = IC (1)
Mặt khác ta có: AB = AC (\(\Delta ABC\) cân tại A) (2)
HB = HC (\(\Delta HBC\) cân tại H) (3)
Từ (1); (2) và (3) => 3 điểm I; A; H cùng nằm trên đường trung trực của BC
=> I; A; H thẳng hàng
=> các đường thẳng BN; AH; CM đồng quy
(Vẽ hình)
d) Gọi I là giao điểm của BN và CM
Xét tam giác BNH và tam giác CMH
BH=CH (tam giác BHC cân)
góc BHN=góc CHM ( đối đỉnh)
NH=HM (gt)
do đó tam giác BNH = tam giác CMH (cgc)
=> góc HBN= góc HCM (hai góc tương ứng)
Lại có góc HBC = góc HCB (câu b)
=> góc HBC+góc HBN= góc HCB+ góc HCM
=>góc IBC= góc ICB. Do đó tam giác BIC cân tại I => IB=IC (1)
Mặt khác ta có AB=AC (tam giác ABC cân tại A) (2)
HB=HC (tam giác BHC cân) (3)
Từ (1);(2) và (3) => 3 điểm I,A,H cùng nằm trên đường trung trựccủa BC
=> I,A,H thẳng hàng=> BN,AH,CM đồng quy (đpcm)