Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AM=\dfrac{1}{2}AB\)
=>\(S_{AMC}=\dfrac{1}{2}\cdot S_{ABC}=\dfrac{1}{2}\cdot27=13,5\left(cm^2\right)\)
Vì \(AN=\dfrac{1}{3}AC\)
nên \(S_{AMN}=\dfrac{1}{3}\cdot S_{AMC}=\dfrac{1}{3}\cdot13,5=4,5\left(cm^2\right)\)
Kẻ MK//BC
=>AM/MB=AK/KC=2
=>AK=2KC
=>AK=2/3AC
mà AN=1/2AC
nên AK/AN=4/3
=>AN/AK=3/4
=>\(S_{ANM}=\dfrac{3}{4}\cdot S_{AMK}\)
=>\(S_{AMK}=108\left(cm^2\right)\)
ΔABC có MK//BC
nên ΔAMK đồng dạng vơi ΔABC
=>\(\dfrac{S_{AMK}}{S_{ABC}}=\left(\dfrac{AM}{AB}\right)^2=\left(\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)
=>\(S_{ABC}=108:\dfrac{4}{9}=27\cdot9=243\left(cm^2\right)\)
a: Đặt HB=x; HC=y(Điều kiện: x>0 và y>0)
Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB<HC
mà HB+HC=BC=25
nên \(HB< \dfrac{25}{2}=12,5;HC>12,5\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(HB\cdot HC=12^2=144\)
mà HB+HC=25
nên HB,HC lần lượt là các nghiệm của phương trình sau:
\(x^2-25x+144=0\)
=>\(x^2-9x-16x+144=0\)
=>x(x-9)-16(x-9)=0
=>(x-9)(x-16)=0
=>\(\left[{}\begin{matrix}x=9\\x=16\end{matrix}\right.\)
mà BH<HC
nên BH=9cm; CH=16cm
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{9\cdot25}=15\left(cm\right)\\AC=\sqrt{16\cdot25}=20\left(cm\right)\end{matrix}\right.\)
b: ΔABC vuông tại A có AM là đường trung tuyến
nên \(AM=\dfrac{BC}{2}=12,5\left(cm\right)\)
Xét ΔAHM vuông tại H có
\(sinAMH=\dfrac{AH}{AM}=\dfrac{12}{12,5}=\dfrac{24}{25}\)
=>\(\widehat{AMH}\simeq73^044'\)
c: ΔAHM vuông tại H
=>\(AH^2+HM^2=AM^2\)
=>\(HM^2=12,5^2-12^2=12,25\)
=>HM=3,5(cm)
\(S_{HAM}=\dfrac{1}{2}\cdot HA\cdot HM=\dfrac{1}{2}\cdot3,5\cdot12=6\cdot3,5=21\left(cm^2\right)\)
hình đâu??????????????????????????????