Cho tam giác ABC có AC > AB. Gọi N là trung điểm của BC. Kẻ BD vuông góc với AM tại D, CE vuông góc với AM tại E.
Chứng minh rằng:
a; BD = CE
b; M là trung điểm của DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề: Chứng minh ∆ABC ∽ ∆EAC
Giải:
∆ABC vuông tại A
⇒ BC² = AB² + AC² (Pytago)
= 6² + 8²
= 100
⇒ BC = 10 (cm)
Do AM là đường trung tuyến ứng với cạnh huyền BC
⇒ AM = BM = CM = BC : 2
= 10 : 2 = 5 (cm)
∆AMC có AM = CM = 5 (cm)
⇒ ∆AMC cân tại M
⇒ ∠MAC = ∠MCA (hai góc ở đáy)
Do MA ⊥ DE (gt)
CE ⊥ DE (gt)
⇒ MA // DE
⇒ ∠MAC = ∠ACE (so le trong)
Mà ∠MAC = ∠MCA (cmt)
⇒ ∠MAC = ∠ACE
⇒ ∠ACE = ∠BCA (do ∠MAC = ∠BAC)
Xét hai tam giác vuông:
∆ABC và ∆EAC có:
∠BCA = ∠ACE (cmt)
⇒ ∆ABC ∽ ∆EAC (g-g)
b) Do ∆ABC ∽ ∆EAC (cmt)
⇒ AC/CE = BC/AC
⇒ CE = AC²/BC
= 8²/10
= 6,4 (cm)
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
=>ΔAKB=ΔAKC
=>góc AKB=góc AKC=180/2=90 độ
=>AK vuông góc BC
b: AK vuông góc BC
CE vuông góc CB
=>AK//CE
Xét ΔCEB vuông tại C có góc B=45 độ
nên ΔCEB vuông cân tại C
=>CE=CB
c: AK=1/2CE(do AK là đường trung bình của ΔCEB)