K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

Do tam giác ABC vuông tại A nên góc A là góc lớn nhất

Có AB < AC ⇒ C < B . Từ đó suy ra ∠C < ∠B < ∠A hay ∠A > ∠B > ∠C . Chọn B

17 tháng 2 2022

áp dụng định lí Py-ta-go

=>AB2+AC2=BC2

=>102+242=BC2

100+576=BC2

676=BC2

26=BC

=>AB<AC<BC

17 tháng 2 2022

AB<AC<BC

16 tháng 9 2023

Xét tam giác ABC vuông ta có: 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+10^2}=26\left(cm\right)\)

\(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{10^2}{26}\approx4\left(cm\right)\\HC=\dfrac{AC^2}{BC}=\dfrac{24^2}{26}\approx22\left(cm\right)\end{matrix}\right.\)

Xét tam giác ABH vuông tại H áp dung Py-ta-go ta có: 

\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{10^2-4^2}=2\sqrt{21}\left(cm\right)\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot2\sqrt{21}\cdot26=26\sqrt{21}\left(cm^2\right)\)

16 tháng 9 2023

Ta có :

\(BC^2=AB^2+AC^2\left(Pitago\right)\)

\(\Leftrightarrow BC^2=100+576=676\)

\(\Leftrightarrow BC=26\left(cm\right)\)

\(AB^2=BH.BC\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{100}{26}=\dfrac{50}{13}\left(cm\right)\)

\(BC=BH-HC\)

\(\Leftrightarrow HC=BC-BH=26-\dfrac{50}{13}=\dfrac{288}{13}\left(cm\right)\)

\(AH^2=BH.HC=\dfrac{50}{13}.\dfrac{288}{13}=\dfrac{14400}{13^2}\)

\(\Leftrightarrow AH=\dfrac{120}{13}\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.10.24=120\left(cm^2\right)\)

Hoặc : \(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.\dfrac{120}{13}.26=120\left(cm^2\right)\)

 

25 tháng 10 2019

Bán kính đường tròn ngoại tiếp tam giác = 15cm

21 tháng 2 2021

hình tự vẽ nha bạn 

TAM GIÁC ABC có: BAM=CAM (GT)

Suy ra: AB/AC=MB/MC

Thay số vào ta được:24/32=15/MC

                              = 3/4=15/MC

                              => MC=20 cm

21 tháng 2 2021

A B C M 24 32 15

Vì AM là đường trung tuyến của tam giác ABC nên suy ra :

\(\frac{AB}{AC}=\frac{MB}{MC}\Rightarrow\frac{24}{32}=\frac{15}{MC}\Rightarrow MC=\frac{32.15}{24}=20\)cm 

Vậy MC = 20 cm 

20 tháng 2 2017

A B C M

a) ta có: \(AB^2+AC^2=24^2+32^2=40^2=BC^2\)

=> theo Pitago đảo thì tam giác ABC vuông tại A

b) Ta có: MC=AC-AM=32-7=25

\(\Delta ABM\)vuông tại A có: \(AM^2+AB^2=MB^2\)=> MB=\(\sqrt{AM^2+AB^2}=\sqrt{7^2+24^2}=25\)

Do đó: MB=MC => \(\Delta MBC\)cân tại M

=> \(\widehat{MBC}=\widehat{MCB}\)

Mặt khác \(\widehat{AMB}\)là góc ngoài \(\Delta MBC\)nên: \(\widehat{AMB}\)=\(\widehat{MBC}+\widehat{MCB}=2\widehat{MCB}\)(ĐPCM)

28 tháng 7 2019

Chị nghĩ em viết thiếu đề thì phải

28 tháng 7 2019

không thiếu đâu chị ạ