K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)(t/c)

=> \(\widehat{B}=\widehat{C}\)=50o

=> \(\widehat{A}\)=80o

Ta lại có : \(\widehat{ABK}+\widehat{KBC}=\widehat{ABC}\)

<=> \(\widehat{ABK}=50^{o^{ }^{ }}-10^o=40^o\)

Xét \(\Delta ABK\)

\(\widehat{A}+\widehat{ABK}+\widehat{AKB}=180^o\)

=> \(\widehat{AKB}=180^0-\left(40^0+80^o\right)=40^o\)

=>\(\widehat{ABK}=\widehat{AKB}\)=> \(\Delta ABK\)cân (đpcm)

3 tháng 11 2018

giúp mình với

3 tháng 11 2018

giờ muộn rồi chẳng có mấy ai đâu,chỉ có cô đơn thôi...

10 tháng 8 2019

Cách 3: (Lớp 8) Trên nửa mặt phẳng bờ AC không chứa B, dựng tam giác đều ACG.

A C B D G

Có ngay AB = AC = AG và ^BAG = ^BAC + ^CAG = 900 => \(\Delta\)BAG vuông cân tại A

Suy ra ^CBG = ^ABC - ^ABG = 300 = ^DAB      (1)

Cũng dễ thấy ^ADB = 1350; ^BCG = ^ACB + ^ACG = 1350 => ^BCG = ^ADB (2)

Từ (1) và (2) suy ra \(\Delta\)CGB ~ \(\Delta\)DBA (g.g). Từ đây \(\frac{AD}{BC}=\frac{AB}{BG}=\frac{1}{\sqrt{2}}\)

Vậy \(AD=\frac{BC}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)(cm).

9 tháng 8 2019

B A C D E

Trên nửa mặt phẳng bờ BC chứa A dựng \(\Delta\)BCE vuông cân tại E

Khi đó ^EBA = ^ABC - ^EBC = 300 = ^DAB

\(\Delta\)AEC = \(\Delta\)AEB (c.c.c) => ^EAB = ^BAC/2 = 150 = ^DBA

Xét \(\Delta\)BEA và \(\Delta\)ADB có: AB chung, ^EAB = ^DBA, ^EBA = ^DAB

=> \(\Delta\)BEA = \(\Delta\)ADB (g.c.g) => AD = BE = \(\frac{BC}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)(cm).

27 tháng 1 2016

bn nhấn vào đúng 0 sẽ ra đáp án

27 tháng 1 2016

chtt

15 tháng 6 2017

a) góc ABD=75 độ

b) ko có tam giác DBC sao mà so sánh đc ( bn viết sai đề rồi )