Cho tam giác ABC có AB =AC= 10 cm; BC = 16 cm. Trung tuyến AM. Chứng minh rằng:
a) ΔABM = ΔACM
b) AM ⊥ BC
c) Tính độ dài AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py-ta-go đảo vào tam giác ABC, có:
AB2 + AC2 = 62 + 82 = 100 = 102 = BC2
Suy ra tam giác ABC vuông
!
+ Xét tam giác ABC có :
AB^2+AC^2=100
BC^2=10^2=100
=> AB^2+ AC^2= 100=BC^2
=> tam giác ABC vuông tại A ( Py-ta-go)
Ta thấy BC là cạnh lớn nhất
Ta có: \(AB^2+AC^2=6^2+8^2=100.\)
\(BC^2=10^2=100\)
\(\Rightarrow BC^2=AB^2+AC^2\)
Xét tam giác ABC có \(BC^2=AB^2+AC^2\)
=> TAM GIÁC ABC vuông tại A( Py-ta-go đảo)
Chú ý AM là đường cao, từ đó dùng Định lý Pytago tính được AM = 12 cm.
Xét \(\Delta\)AMN và \(\Delta\)ABC có:
\(\frac{AM}{AB}=\frac{AN}{AC}\left(\frac{10}{15}=\frac{14}{21}\right)\)
=> MN // BC (1)
Gọi M là trung điểm của BC.
Gọi G là giao điểm AM và MN
Xét \(\Delta\)ABM có:
MG// BM ( theo(1))
=> \(\frac{AG}{AM}=\frac{AM}{AB}=\frac{10}{15}=\frac{2}{3}\)
=> G là trọng tâm của \(\Delta\)ABC
Vậy MN qua trong tâm \(\Delta\)ABC.
a: XétΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: M là trung điểm của BC nên MB=MC=8cm
=>AM=6cm
a, Xét Δ ABM và Δ ACM, có :
AB = AC (gt)
AM là cạnh chung
MB = MC (M là trung điểm BC)
=> Δ ABM = Δ ACM (c.c.c)
b, Ta có : AB = AC (gt)
=> Δ ABC cân tại A
Ta có :
Δ ABC cân tại A
Mà AM là trung tuyến
=> AM là đường cao
=> AM ⊥ BC
c, Ta có :
M là trung điểm
=> BC = 2MB
=> 16 = 2MB
=> MB = 8 (cm)
Xét Δ AMB vuông tại M, có :
\(AB^2=AM^2+MB^2\)
=> \(10^2=AM^2+8^2\)
=> \(36=AM^2\)
=> AM = 6 (cm)