K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2022

a) -△ABC và △HAC có: \(\widehat{BAC}=\widehat{AHC}=90^0\)\(\widehat{C}\) là góc chung.

\(\Rightarrow\)△ABC∼△HAC (g-g) 

b)\(\Rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\Rightarrow AC^2=BC.CH=13.4=52\Rightarrow AC=\sqrt{52}\left(cm\right)\)

c) \(\widehat{AHE}=90^0-\widehat{AHF}=\widehat{CHF}\).

-△AHE và △CHF có: \(\widehat{AHE}=\widehat{CHF}\)\(\widehat{HAE}=\widehat{HCF}\) (△ABC∼△HAC)

\(\Rightarrow\)△AHE∼△CHF (g-g) \(\Rightarrow\dfrac{AH}{CH}=\dfrac{AE}{CF}\Rightarrow AE.CH=AH.FC\).

 

20 tháng 4 2022

d) -Gọi G là giao của AB và HF.

-△GAF và △GHE có: \(\widehat{GAF}=\widehat{GHE}=90^0\)\(\widehat{G}\) là góc chung.

\(\Rightarrow\)△GAF∼△GHE (g-g) \(\Rightarrow\dfrac{GA}{GH}=\dfrac{GF}{GE}\Rightarrow\dfrac{GA}{GF}=\dfrac{GH}{GE}\)

-△GEF và △GHA có: \(\dfrac{GA}{GF}=\dfrac{GH}{GE}\)\(\widehat{G}\) là góc chung.

\(\Rightarrow\)△GEF∼△GHA (c-g-c) \(\Rightarrow\widehat{GFE}=\widehat{GAH}\).

\(\widehat{GAH}=90^0-\widehat{CAH}=\widehat{ACB}\Rightarrow\widehat{GFE}=\widehat{ACB}\).

-△HEF và △ABC có: \(\widehat{EHF}=\widehat{BAC}=90^0;\widehat{HFE}=\widehat{ACB}\).

\(\Rightarrow\)△HEF∼△ABC (g-g) \(\Rightarrow\dfrac{S_{HEF}}{S_{ABC}}=\dfrac{HE}{AB}\Rightarrow S_{HEF}=\dfrac{HE}{AB}.S_{ABC}\)

-Qua H kẻ đg thẳng vuông góc với AB tại E' \(\Rightarrow HE\ge HE'\)

\(\Rightarrow S_{HEF}\ge\dfrac{HE'}{AB}.S_{ABC}\).

-\(S_{HEF}\) có diện tích nhỏ nhất \(\Leftrightarrow E\equiv E'\Leftrightarrow\)E là hình chiếu của H lên AB.

 

 

10 tháng 3 2020

ABCDE

a) Ta có : BE // AC

\(\Rightarrow\)^AEB = ^EAC

\(\Rightarrow\)^AEB = ^BAE (= ^EAC)

\(\Rightarrow\)△AEB cân tại B (ĐPCM)
b) Xét △ABC có AD là tia phân giác của góc A

\(\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}\)

Mà AB = BE (△AEB cân tại B)

\(\Rightarrow\frac{DB}{DC}=\frac{BE}{AC}\)(ĐPCM)

c) Xét △ABC có AD là tia phân giác của góc A

\(\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}\)(Đã chứng minh ở câu b)

d) Ta có :\(\frac{DB}{DC}=\frac{AB}{AC}\)

\(\Rightarrow\frac{DB}{3}=\frac{2,5}{5}\)

\(\Rightarrow DB=1,5\)

Vậy DB = 1,5 cm

a: Xét ΔAHB vuông tại H và ΔAHK vuông tại H có 

AH chung

HB=HK

Do đó: ΔAHB=ΔAHK

7 tháng 3 2022

Độ dài đoạn thẳng CB là:

         8 - 4 = 4 (cm)

Điểm C là trung điểm của đoạn thẳng AB

   Vì điểm C nằm giữa hai điểm A và B

    Và  AC = CB = 4cm       

cho minh hỏi câu cuối là tính độ dài D gì vậy

 

22 tháng 4 2015

a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :

Góc AHC = góc BAC = 90o; góc C chung

=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)

b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144

=> \(AB=\sqrt{144}=12\left(cm\right)\)

Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)

c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')

=> Góc BIH = góc ADB

Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB

=> Tam giác AID cân tại A

d) ('Mình ko biết')

28 tháng 7 2016

a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :

Góc AHC = góc BAC = 90o; góc C chung

=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)

b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144

=> \(AB=\sqrt{144}=12\left(cm\right)\)

Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)

c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')

=> Góc BIH = góc ADB

Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB

=> Tam giác AID cân tại A

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{7}\)

nên \(\dfrac{HB}{HC}=\dfrac{9}{49}\)

hay \(HB=\dfrac{9}{49}HC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{9}{49}=42^2\)

hay HC=98cm

\(\Leftrightarrow HB=\dfrac{9}{49}\cdot98=18cm\)

24 tháng 8 2021

 

Ta có:\(\dfrac{AB}{AC}=\dfrac{3}{7}\)  ⇒ AB =  \(\dfrac{3}{7}\) AC

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{42^2}=\dfrac{49}{9AC^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{42^2}=\dfrac{49}{9AC^2}\)

⇔ \(AC^2=11368\Leftrightarrow AC=14\sqrt{58}\) \(\left(cm\right)\)

⇔ \(AB=\dfrac{3}{7}.14\sqrt{58}=6\sqrt{58}\) \(\left(cm\right)\)

Áp dụng định lý Pytago cho ABH vuông tại A có: \(AB^2+AC^2=BC^2\)

\(BC^2=\left(6\sqrt{58}\right)^2+\left(14\sqrt{58}\right)^2\)

⇔ \(BC^2=13456\Rightarrow BC=116\) \(cm\)

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có: