Cho A = \(\frac{2}{n-1}\); B = \(\frac{n+4}{n+1}\)(n thuoc z)
a) viết tập hợp C các số nguyên n để A và B cùng tồn tại
b) tìm các số nguyên n để A và B đều là các số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+...+\frac{n-(n-2)}{n-2}+\frac{n-(n-1)}{n-1}\)
\(=\left(\frac{n}{1}+\frac{n}{2}+\frac{n}{3}+....+\frac{n}{n-1}\right)-(\frac{1}{1}+\frac{2}{2}+...+\frac{n-1}{n-1})\)
\(=n-1+n(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})-(n-1)=n(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})\)
\(=nB\)
Do đó: $\frac{A}{B}=n$
Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :
\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)
\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)
\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow bm=an\)
Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .
Bài 1:
a) Sửa lại là: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\) nhé.
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)
\(=3^n.\left(9+1\right)-2^{n-1}.2.\left(4+1\right)\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)\)
Vì \(10⋮10\) nên \(10.\left(3^n-2^{n-1}\right)⋮10.\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\left(đpcm\right)\left(\forall n\in N^X\right).\)
Chúc bạn học tốt!
Ngọc Anh Dũngo0oNguyễno0oHuy hoàng indonaca0o0 khùng mà 0o0Tình bạn vĩnh cửu Phương DungHacker Mũ Trắng
Ta có :
\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)
\(A< \frac{1}{4}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)=\frac{1}{4}\left(1-\frac{1}{n}\right)\)
\(A< \frac{1}{4}-\frac{1}{4n}\)
Lại có \(n>0\) nên \(\frac{1}{4n}>0\)
\(\Rightarrow\)\(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
\(A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosa}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{a}{2}-1\right)}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+cos^2\frac{a}{2}-\frac{1}{2}}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{a}{2}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{a}{4}-1\right)}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{a}{4}}=\sqrt{\frac{1}{2}+\frac{1}{2}\left(cos^2\frac{a}{8}-1\right)}\)
\(=cos\frac{a}{8}\Rightarrow n=8\)