Bài 2: Cho tam giác ABC (góc A= 900); AH vuông góc với BC. Gọi E,F thứ tự là hinhfchieeus của H trên AB,AC .
a)Cmr: AE.AB=À.AC
b)Cmr: \(\frac{BH}{CH}\)=\(\left(\frac{AB}{AC}\right)^2\)
c)Cmr: \(\frac{BE}{CF}=\left(\frac{AB}{AC}\right)^3\)
d)Cmr: \(^{AH^3=BC.BE.CF}\)
Tự vẽ hình
a) Xét tứ giác AEHF có: ^EAF=90(gt)
^AFH=90(gt)
^AEF=90(gt)
=> Tứ giac AEHF là hình chữ nhật
Gọi O là giao điểm của AH và EF
Vì AEHF là hcn(cmt)
=> OE=OA
=>\(\Delta\)OAE cân tại O
=>^OAE=^OEA
Xét \(\Delta\)ABH vuông tại H(gt)
=>^B+^OAE=90 (1)
Xét \(\Delta\)ABC vuông tại A(gt)
=>^B+^C=90 (2)
Từ (1) và (2) suy ra: ^OAE=^C
Mà ^OAE=^OEA(cmt)
=>^AEF=^ACB
Xét \(\Delta\)AEF và \(\Delta\)ACB có:
^EAF=^CAB=90(gt)
^AEF=ACB(cmt)
=>\(\Delta\)AEF~\(\Delta\)ACB(g.g)
=>\(\frac{AE}{AC}=\frac{AF}{AB}\)
=>AE.AB=AF.AC
Từ phần b bạn tự làm nhé (^.^)
Xin lỗi câu a)Cmr: AE.AB=AF.AC