K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Cách dựng:

- Dựng ∆ BHC, BH = 2,5 cm

- ∠ (BHC) = 90 0

- Trên tia Hx lấy điểm C sao cho BC = 3cm

- Dựng tia đi qua B và song song CH nằm trên nửa mặt phẳng bờ BC chứa điểm H. Lấy điểm A sao cho BA = 2cm

- Dựng cung tròn tâm B bán kính bằng AC cắt tia CH tại D.

Nối AD ta có hình thang ABCD cần dựng.

Chứng minh: Thật vậy theo cách dựng AB // CD nên tứ giác ABCD là hình thang có AB = 2cm, BC = 3cm, BH = 2,5cm.

AC = BD

Vậy ABCD là hình thang cân thỏa mãn điều kiện bài toán.

4 tháng 8 2016

mog các bạn có tâm giúp tôi lm nhanh câu hỏi này 

xin chân thành cảm ơn rất nhiều  =)))

4 tháng 8 2016
Đề bài có sai không thế.
27 tháng 12 2019

a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)

⇔ AB = DM và AB // DM

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC

c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

Xét tam giác vuông AHB, ta có :

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

⇒ BC = AM = 3 (cm)

Ta có:

M là trung điểm của DC nên

SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)

Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)

⇔ SABD = SBMD = 3 (cm2)

Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)

5 tháng 2 2021

Mày N Mày Chết M Mày Đi Kêu Cặk

a: Xét ΔADB và ΔBCD có 

\(\widehat{BAD}=\widehat{DBC}\)

\(\widehat{ABD}=\widehat{BDC}\)

Do đó: ΔADB\(\sim\)ΔBCD
b: ta có:ΔADB\(\sim\)ΔBCD

nên AD/BC=AB/BD

=>2,5/BC=1/2

hay BC=5(cm)

a: Xét ΔADB và ΔBCD có

góc DAB=góc CBD

góc ABD=góc BDC

=>ΔADB đồng dạng với ΔBCD

b: ΔADB đồng dạng với ΔBCD

=>AD/BC=DB/CD=AB/BD

=>3,5/BC=5/CD=2,5/5=1/2

=>BC=7cm; CD=10cm

 

18 tháng 9 2019

A B C D M H 1 2 4

a ) Ta có : \(AB=AD=\frac{CD}{2}\)    và M là trung điểm của CD (gt)

\(\Leftrightarrow AB=DM\) và AB // DM 

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của \(\Delta BDC\) mà MB = MD = MC.

Do đó \(\Delta BDC\) là tam giác vuông tại B hay \(DB\perp BC\)

c) ABMD là hình thoi (cmt)  \(\Leftrightarrow\widehat{D}_1=\widehat{D}_2\) 

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

\(HB=HD=\frac{1}{2}BD=\frac{1}{2}.4=2\left(cm\right)\)

Xét tam giác vuông AHB, ta có :

\(AH=\sqrt{AB^2-HB^2}\) ( định lí Pitago )

          \(=\sqrt{2,5^2-2^2}=1,5\left(cm\right)\)

\(\Rightarrow AM=3\left(cm\right)\)

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

\(\Rightarrow BC=AM=3\left(cm\right)\)

Ta có :

\(S_{BDC}=\frac{1}{2}BD.BC=\frac{1}{2}.4.3=6\left(cm^2\right)\)

M là trung điểm của DC nên

\(S_{BMD}=S_{BMC}=\frac{S_{BCD}}{2}=3\left(cm^2\right)\) 

(chung đường cao kẻ từ B và MD = MC)

Mặt khác \(\Delta ABD=\Delta MDB\) ( ABCD là hình thoi )

\(\Leftrightarrow S_{ABD}=S_{BMD}=3\left(cm^2\right)\)

Vậy \(S_{ABCD}=S_{ABD}+S_{BMD}+S_{BMC}=9\left(cm^2\right)\)

Chúc bạn học tốt !!!

5 tháng 2 2021

Buồi

23 tháng 1 2022

MA:MC=3:5 chứ nhỉ?

23 tháng 1 2022

- Đề bài đúng nhé bạn:

Xét tam giác MDC có:

AB//CD (gt)

=>\(\dfrac{MA}{MD}\)=\(\dfrac{AB}{DC}\)(định lí Ta-let)

=>\(\dfrac{AB}{2,5}=\dfrac{3}{5}\)

=>AB=\(\dfrac{3}{5}.2,5\)=1,5(cm)

22 tháng 7 2018

Vì △ ABD ∼  △ BDC nên: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Với AB = 2,5cm; AD = 3,5cm; BD = 5cm, ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8