Cho HBH ABCD có góc A =60°; AD=2AB. Gọi M là trung điểm của AD, N là trung điểm của BC. Từ C kẻ đường vuông góc với MN ở E cắt AB ở F. Cm
a. Tứ giác MNCD là hình thoi
b. E là trung điểm của CF
c. Tam giác MCF đều
d. Ba điểm F, N, D thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai bạn nhé. Phải là BD=2AD nhà. Nếu như đề trên thì nó là hình thang chứ ko phải hbh
a/ c/m HK=ACsinBAD (mk doán vậy ^^)
góc BAD= góc CDH
=>sinBAD=sinCDH=CH/CD
<=> ACsinBAD=AC.CH/CD(1)
Tứ giác AKCH nội tiếp, nên dễ dàng c/m dc: tam giác ADC đồng dạng tam giác KCH (g.g)
=> AC/CD=HK/CH <=> AC.CH/CD=HK (2)
(1)(2)=> dpcm
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔBIE có BI=BE
nên ΔBIE cân tại B
mà góc IBE=60 độ
nên ΔBIE đều
=>góc I=60 độ
Xét tứ giác AFEI có
EF//AI
góc I=góc A
Do đó AFEI là hình thang cân
c: Xét ΔBAD có
BF là đường trung tuyến
BF=AD/2
Do đó: ΔBAD vuông tại B
=>DB vuông góc với BI
Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
mà DB vuông góc với BI
nên BICD là hình chữ nhật
d: Xét ΔAED có
EF la trung tuyến
FE=DA/2
Do đó: ΔAED vuông tại E
=>góc AED=90 độ
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔBIE có BI=BE
nên ΔBIE cân tại B
mà góc IBE=60 độ
nên ΔBIE đều
=>góc I=60 độ
Xét tứ giác AFEI có
EF//AI
góc I=góc A
Do đó AFEI là hình thang cân
c: Xét ΔBAD có
BF là đường trung tuyến
BF=AD/2
Do đó: ΔBAD vuông tại B
=>DB vuông góc với BI
Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
mà DB vuông góc với BI
nên BICD là hình chữ nhật
d: Xét ΔAED có
EF la trung tuyến
FE=DA/2
Do đó: ΔAED vuông tại E
=>góc AED=90 độ
bn tham khảo tại đây nhé :
Bài 57 Sách bài tập - tập 2 - trang 98 - Toán lớp 8 | Học trực tuyến
tuy ko giống hết nhưng bn có thể dựa vào đó mà tham khảo
2:
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
b: Hình chữ nhật ADME trở thành hình vuông khi AM là phân giác của góc BAC
Xét ΔABC có
AM là đường trung tuyến
AM là đường phân giác
Do đó: ΔABC cân tại A
=>AB=AC
3:
\(ab\left(a+b\right)-bc\left(b+c\right)-ac\left(c-a\right)\)
\(=a^2b+ab^2-b^2c-bc^2+ac\left(a-c\right)\)
\(=\left(a^2b-bc^2\right)+\left(ab^2-b^2c\right)+ac\left(a-c\right)\)
\(=b\left(a^2-c^2\right)+b^2\left(a-c\right)+ac\left(a-c\right)\)
\(=b\left(a-c\right)\left(a+c\right)+\left(a-c\right)\left(b^2+ac\right)\)
\(=\left(a-c\right)\left(ba+bc+b^2+ac\right)\)
\(=\left(a-c\right)\left[\left(ba+b^2\right)+\left(bc+ac\right)\right]\)
\(=\left(a-c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]\)
1:
a: Ta có: ABCD là hình bình hành
=>AD=BC(1)
Ta có: M là trung điểm của AD
=>\(MA=MD=\dfrac{AD}{2}\left(2\right)\)
Ta có:N là trung điểm của BC
=>\(NB=NC=\dfrac{BC}{2}\)(3)
Từ (1),(2),(3) suy ra AM=MD=CN=NB
Xét tứ giác AMNB có
AM//NB
AM=NB
Do đó: AMNB là hình bình hành
Hình bình hành AMNB có AM=AB(=AD/2)
nên AMNB là hình thoi
b: Ta có: AMNB là hình thoi
=>MN=AM
mà \(AM=\dfrac{AD}{2}\)
nên \(NM=\dfrac{AD}{2}\)
Xét ΔNAD có
NM là đường trung tuyến
\(NM=\dfrac{AD}{2}\)
Do đó: ΔNAD vuông tại N
=>AN\(\perp\)ND
c:
Ta có: AB=DC
AB=AI
Do đó: DC=AI
Ta có: AB//DC
I\(\in\)AB
Do đó: IA//DC
Xét ΔABN có BA=BN(=BC/2) và \(\widehat{B}=60^0\)
nên ΔBAN đều
=>\(AN=BN=\dfrac{BC}{2}\)
Xét ΔBAC có
AN là đường trung tuyến
\(AN=\dfrac{BC}{2}\)
Do đó: ΔBAC vuông tại A
=>BA\(\perp\)AC
=>CA\(\perp\)AI
Xét tứ giác AIDC có
AI//DC
AI=DC
Do đó: AIDC là hình bình hành
Hình bình hành AIDC có \(\widehat{IAC}=90^0\)
nên AIDC là hình chữ nhật
Lời giải:
Vì $ABCD$ là hình bình hành nên $AB\parallel CD$
$\Rightarrow AE\parallel CF(1)$
Vì $ABCD$ là hình bình hành nên $AB=CD$
$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$
$\Rightarrow AE=CF(2)$
Từ $(1); (2)$ xét tứ giác $AECF$ có 2 cạnh đối $AE, CF$ song song và bằng nhau nên $AECF$ là hình bình hành.