K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

B

27 tháng 10 2021

Áp dụng PTG: \(x^2+\left(x+2\right)^2=6^2\Leftrightarrow2x^2+4x+4=36\)

\(\Leftrightarrow2x^2+4x-32=0\Leftrightarrow\left[{}\begin{matrix}x=-1+\sqrt{17}\left(tm\right)\\x=-1-\sqrt{17}\left(ktm\right)\end{matrix}\right.\)

Do đó \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\left(-1+\sqrt{17}\right)\left(1+\sqrt{17}\right)\)

\(S_{ABC}=\dfrac{1}{2}\left(17-1\right)=\dfrac{1}{2}\cdot16=8\left(cm^2\right)\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Đặt độ dài cạnh AB là x (\(x > 0\))

Theo giả thiết ta có độ dài \(AC = AB + 2 = x + 2\)

Áp dụng định lý pitago trong tam giác vuông ta có

\(BC = \sqrt {A{B^2} + A{C^2}}  = \sqrt {{x^2} + {{\left( {x + 2} \right)}^2}}  = \sqrt {2{x^2} + 4x + 4} \)

b) Chu vi của tam giác là \(C = AB + AC + BC\)

\( \Rightarrow C = x + \left( {x + 2} \right) + \sqrt {2{x^2} + 4x + 4}  = 2x + 2 + \sqrt {2{x^2} + 4x + 4} \)

Theo giả thiết ta có

\(\begin{array}{l}C = 24 \Leftrightarrow 2x + 2 + \sqrt {2{x^2} + 4x + 4}  = 24\\ \Leftrightarrow \sqrt {2{x^2} + 4x + 4}  = 22 - 2x\\ \Rightarrow 2{x^2} + 4x + 4 = {\left( {22 - 2x} \right)^2}\\ \Rightarrow 2{x^2} + 4x + 4 = 4{x^2} - 88x + 484\\ \Rightarrow 2{x^2} - 92x + 480 = 0\end{array}\)

\( \Rightarrow x = 6\) hoặc \(x = 40\)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} + 4x + 4}  = 22 - 2x\) ta thấy chỉ có  \(x = 6\) thỏa mãn phương trình

Vậy độ dài ba cạnh của tam giác là \(AB = 6;AC = 8\) và \(BC = 10\)(cm)

19 tháng 10 2023

Ko biết

 

11 tháng 1 2021

Độ dài chiều cao AH là:

      (4,5+6):2 = 5,25 (cm)

            Đáp số: 5,25 cm

nhớ k cho mình nha. Yêu nhiều!

9 tháng 1 2017

nếu đặt a=bc; b=ab; c=ac; p=(a+b+c)/2

thì AH =\(\frac{2}{c}\)\(\sqrt{p\left(P-a\right)\left(p-b\right)\left(p-c\right)}\)

Lên lớp tám thì mới đủ khả năng chứng minh

Lên lớp chín thì chứng minh lượng giác sẽ nhanh hơn

Bài 2: D

Bài 3: B

Bài 4: B

bài 5: C

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)

hay AH=7,2(cm)

10 tháng 10 2021

Ta có : HB + HC = BC = 8 cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AB^2=BH.BC=2.8\Rightarrow AB=4cm\)

* Áp dụng hệ thức : \(AC^2=CH.BC=6.8\Rightarrow AC=4\sqrt{3}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{16\sqrt{3}}{8}=2\sqrt{3}cm\)

17 tháng 11 2021

mà hệ thống tính điểm GP SP là ntn v bác?