ΔABC vuông tại A,Có I là trung điểm Bc.
A)Cho Ab=6cm ; AC=8cm.Tính AI
B) Từ I kẻ IH ⊥ AB ; IK ⊥ AC.Chứng minh tứ giác AHIK là hình chữ nhật.
C)Vẽ E đ/x I qua K. Chứng minh tứ giác AICE là hình thoi
D) Tính diện tích ΔABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AI=5cm
b: Xét tứ giác AHIK có
\(\widehat{AHI}=\widehat{AKI}=\widehat{KAH}=90^0\)
Do đó: AHIK là hình chữ nhật
Bài 1:
Xét ΔBMC có
N là trung điểm của BM
I là trung điểm của BC
Do đó: NI là đường trung bình của ΔBMC
Suy ra: NI//MK
Xét ΔANI có
M là trung điểm của AN
MK//NI
Do đó: K là trung điểm của AI
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: AD=DH
DH<DC
=>AD<DC
c: Xet ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
góc ADK=góc HDC
=>ΔDAK=ΔDHC
=>DK=DC và AK=HC
=>D nằm trên trung trực của KC(1) và BK=BC
=>ΔBKC cân tại B
mà BI la trung tuyến
nen BI là trung trực của KC(2)
Từ (1), (2) suy ra B,I,D thẳng hàng
a) Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC(ΔABC cân tại A)
Do đó: ΔABD=ΔACD(Cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)
mà tia AD nằm giữa hai tia AB,AC
nên AD là tia phân giác của \(\widehat{BAC}\)(đpcm)
Ta có: ΔABD=ΔACD(cmt)
nên DB=DC(hai cạnh tương ứng)
Ta có: DB=DC(cmt)
nên D nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)
Từ (1), (2) và (3) suy ra A,M,D thẳng hàng(đpcm)
\(\text{#TNam}\)
`a,`
Xét Tam giác `AIB` và Tam giác `AIC` có:
`AB = AC (\text {Tam giác ABC cân tại A})`
\(\widehat{B}=\widehat{C} (\text {Tam giác ABC cân tại A})\)
`IB = IC (\text {I là trung điểm BC})`
`=> \text {Tam giác AIB = Tam giác AIC (c-g-c)}`
`->`\(\widehat{AIB}=\widehat{AIC} (\text {2 góc tương ứng})\)
Mà `2` góc này nằm ở vị trí kề bù
`->` \(\widehat{AIB}+\widehat{AIC}=180^0\)
`->`\(\widehat{AIB}=\widehat{AIC}=\) `180/2=90^0`
`-> Ai \bot BC (đpcm).`
`b,`
Xét Tam giác `BDI` và Tam giác `CEI` có:
`IB = IC (g``t)`
\(\widehat{B}=\widehat{C} (gt)\)
\(\widehat{BDI}=\widehat{CEI}=90^0\)
`=> \text {Tam giác BDI = Tam giác CEI (ch-gn)}`
`-> BD = CE (\text {2 cạnh tương ứng})`
`c,`
Vì Tam giác `AIB =` Tam giác `AIC (a)`
`->`\(\widehat{BAI}=\widehat{CAI} (\text {2 góc tương ứng})\)
Xét Tam giác `ADI` và Tam giác `AEI` có:
`\text {AI chung}`
\(\widehat{DAI}=\widehat{EAI} (CMT)\)
\(\widehat{ADI}=\widehat{AEI}=90^0\)
`=> \text {Tam giác ADI = Tam giác AEI (ch-gn)}`
`-> AD = AE (\text {2 cạnh tương ứng})`
Xét Tam giác `ADE: AD = AE`
`-> \text {Tam giác ADE cân tại A}`
`->`\(\widehat{ADE}=\widehat{AED}\)\(=\dfrac{180-\widehat{A}}{2}\)
Tam giác `ABC` cân tại `A`
`->`\(\widehat{B}=\widehat{C}=\)\(\dfrac{180-\widehat{A}}{2}\)
`->`\(\widehat{ADE}=\widehat{B}\)
Mà `2` góc này nằm ở vị trí đồng vị
`-> \text {DE // BC (t/c 2 đt' //)}`
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
a: AI=5cm
b: Xét tứ giác AHIK có
\(\widehat{AHI}=\widehat{AKI}=\widehat{KAH}=90^0\)
Do đó: AHIK là hình chữ nhật