Cho tam giac ABC có : AB=15cm ; AC=20cm và BC=25 cm . Chứng tỏ tam giac ABC vuông tại A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a:
Tam giác ABC là tam giác vuông(BC2=AC2+AB2)
câu b:
xét tam giác MHC và tam giác MKB có:
BM=MC (AM là trung tuyến của tam giác ABC)
góc BMK = góc CMH (2 góc đối đỉnh)
MK=MH (giả thiết)
suy ra tam giác MHC = tam giác MKB (cạnh. góc. cạnh)
suy ra góc BKM = góc CHM = 90o (2 góc tương ứng)
suy ra BK // AB ( theo tiên đề ơclit)
a: Xét ΔABH và ΔACH có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔABC có
AH là đường trung tuyến
BD là đường trung tuyến
AH cắt BD tại G
Do đó: G là trọng tâm của ΔABC
a: Xét ΔABH và ΔACH có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔABC có
AH là đường trung tuyến
BD là đường trung tuyến
AH cắt BD tại G
Do đó: G là trọng tâm của ΔABC
\(AH=\sqrt{15^2-9^2}=12\left(cm\right)\)
\(AG=\dfrac{2}{3}\cdot AH=8\left(cm\right)\)
Ta có: AB = 15cm ; AC = 20cm
=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)
BC = 25 => BC2 = 252 = 625 (cm) (2)
Từ (1) và (2) => AB2 + AC2 = BC2
Vậy tam giác ABC vuông tại A (đpcm).
ta có: AB = 15cm ; AC = 20cm
=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)
BC = 25 => BC2 = 252 = 625 (cm) (2)
Từ (1) và (2) => AB2 + AC2 = BC2
Vậy tam giác ABC vuông tại A (đpcm).