Từ điểm O tùy ý trong tam giác ABC vẽ OM; ON; OP lần lượt cung vuông góc với BC; BA; AC. C/m: AN^2 + BP^2 + CM^2 = AP^2 + BM^2 + CN^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng ĐL Pi ta go trong
tam giác vuông OAP có: AP2 = OA2 - OP2
Trong tam giác vuông OAN có: AN2 = OA2 - ON2
Tương tự, với các tam giác vuông OBP; OBM; OCM; OCN
Ta có: AN2 + BP2 + CM2 = (OA2 - ON2) + (OB2 - OP2) + (OC2 - OM2) = (OA2 + OB2 + OC2) - (ON2 + OP2 + OM2)
AP2 + BM2 + CN2 = (OA2 - OP2) + (OB2 - OM2) + (OC2 - ON2) = (OA2 + OB2 + OC2) - (ON2 + OP2 + OM2)
=> AN2 + BP2 + CM2 = AP2 + BM2 + CN2
11111121111111111221111122111112222221111111111111119999999999999