Cho ABC có AB = 6 cm; AC = 8 cm; BC = 10 cm.
a) Chứng tỏ tam giác ABC vuông tại A.
b)Vẽ phân giác BM của
B
( M thuộc AC), từ M vẽ MN BC ( N BC).
Chứng minh MA = MN
c) Tia NM cắt tia BA tại P. Chứng minh AMP = NMC rồi suy ra MP > MN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py-ta-go đảo vào tam giác ABC, có:
AB2 + AC2 = 62 + 82 = 100 = 102 = BC2
Suy ra tam giác ABC vuông
!
+ Xét tam giác ABC có :
AB^2+AC^2=100
BC^2=10^2=100
=> AB^2+ AC^2= 100=BC^2
=> tam giác ABC vuông tại A ( Py-ta-go)
Ta thấy BC là cạnh lớn nhất
Ta có: \(AB^2+AC^2=6^2+8^2=100.\)
\(BC^2=10^2=100\)
\(\Rightarrow BC^2=AB^2+AC^2\)
Xét tam giác ABC có \(BC^2=AB^2+AC^2\)
=> TAM GIÁC ABC vuông tại A( Py-ta-go đảo)
Đáp án A
Tam giác ABC có: A B 2 + A C 2 = B C 2 nên tam giác BAC vuông tại A.
Ta có: AB ⊥ AC tại A và A thuộc đường tròn (B; BA).
Suy ra: AC là tiếp tuyến của (B; BA).
Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
7 – 1 < CA < 7 + 1
6 < CA < 8
Mà CA là số nguyên
CA = 7 cm.
Vậy CA = 7 cm.
b) Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
AB + CA > BC
2 + CA > 6
CA > 4 cm
Mà CA là số nguyên và CA < 6 ( vì BC = 6 cm là cạnh lớn nhất của tam giác)
CA = 5 cm
Vậy CA = 5 cm.
Hai tam giác AEF và ABF có chung đường cao hạ từ F nên ta có \(\frac{S_{AEF}}{S_{ABF}}=\frac{AE}{AB}=\frac{4}{6}=\frac{2}{3}\)(1)
Hai tam giác ABF và ABC có chung đường cao hạ từ B nên ta có \(\frac{S_{ABF}}{S_{ABC}}=\frac{AF}{AC}=\frac{4}{9}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{S_{AEF}}{S_{ABF}}.\frac{S_{ABF}}{S_{ABC}}=\frac{2}{3}.\frac{4}{9}\)\(\Rightarrow\frac{S_{AEF}}{S_{ABC}}=\frac{8}{27}\)\(\Rightarrow S_{AEF}=\frac{8}{27}S_{ABC}=\frac{8}{27}.27=8\left(cm^2\right)\)
Vậy \(S_{AEF}=8cm^2\)
Bạn vào thống kê hỏi đáp của mình xem câu trả lời nhé. Nó chưa duyệt lên.
Xét \(\triangle ABC\) ta có :
\(| BC-AC| < AB < AC+BC\) ( bất đẳng thức tam giác )
\(\Rightarrow |1-7 | < AB < 1+7 \)
\(\Rightarrow |-6 | < AB < 8\)
\(\Rightarrow 6< AB < 8\)
Do \(AB \in \mathbb{Z}\) \(\Rightarrow AB = 7\)
Vậy \(AB=7\) cm .
Chọn \(\mathbb{C}\)
tự kẻ hình
AB = 6 (gt) => AB^2 = 6^2 = 36
AC = 8 (gt) => AC^2 = 8^2 = 64
=> AB^2 + AC^2 = 36 + 64 = 100
BC = 10 (gt) => BC^2 = 10^2 = 100
=> AB^2 + AC^2 = BC^2
=> AH^2 + BC^2 = AH^2 = AH^2 + AC^2 + AB^2
=> AH^2 + BC^2 > AB^2 + AC^2
=> AH + BC > AB + AC do AH; BC; AB; AC >0
CÓ
\(AC^2+AB^2=BC^2\left(PYTAGO\right)\)
=>\(AC^2+6^2=10^2\)
=>\(AC^2=100-36=64\)
=>\(AC=\sqrt{64}=8\)
DIỆN TÍCH TAM GIÁC VUÔNG BẰNG TÍCH 2 CẠNH GÓC VUÔNG CHIA 2
\(\frac{8x6}{2}=24\left(cm^2\right)\)
vậy diên tích tam giác vuông ABC vuông tại A là 24cm2
A B C 8 CM 6 CM 10 CM M N
A B C 1 2 M N P
Bài làm
a) Ta có:
AB2 + AC2 = 62 + 82 = 36 + 64 = 100
BC2 = 102 = 100
=> 100 = 100 hay AB2 + AC2 = BC2
=> Tam giác ABC vuông tại A ( Định lí Py-tha-go )
b) Xét tam giác BAM và tam giác BNM có:
\(\widebat{BAM}=\widebat{BNM}\left(=90^0\right)\)
Cạnh huyền: BM chung
Góc nhọn: \(\widebat{B_1}=\widebat{B_2}\)( BM là tia phân giác của góc B )
=> Tam giác BAM = tam giác BNM ( cạnh huyền-góc nhọn )
=> MA = MN ( hai cnahj tương ứng )
Vậy MA = MN
c) Xét tam giác AMP và tam giác NMC có:
\(\widehat{MAP}=\widehat{MNC}=\left(=90^0\right)\)
MA = MN ( chứng minh trên )
\(\widehat{AMP}=\widehat{NMC}\)( Hai góc đối đỉnh )
=> Tam giác AMP = tam giác NMC ( g.c.g )
=> MP = MC ( hai cạnh tương ứng )
Mà trong tam giác vuông, cạnh huyền luôn lớn hơn 2 cạnh còn lại.
Xét tam NMC vuông tại N có:
MC là cạnh huyền
=> MC > MN
Mà MP = MC
=> MP > MN
Vậy MP > MN ( đpcm )
# Chúc bạn học tốt #