K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

a) theo py ta go thì BC = 10 (tự tính nha)

trung tuyến AM thì 

AM = BM = MC = 10/2 = 5

câu b từ nha

31 tháng 10 2016

b) ADME là hình chữ nhật

A = 90 

ADM = 90

=> DM \\ AE

A = MEA = 90

=> DA \\ ME
câu c từ nha

31 tháng 10 2016

cần gấp nhé

31 tháng 10 2016

cần gấp nhé

21 tháng 7 2017

3.

Áp dụng định lý Py-ta-go:

\(AB^2+AC^2=BC^2\\ 6^2+8^2=BC^2\\ 36+64=BC^2\\ 100=BC^2\\ BC=10\left(cm\right)\)

\(AM\)là trung tuyến của \(BC\) nên:

\(AM=\dfrac{1}{2}\cdot BC=\dfrac{1}{2}\cdot10=5\)(cm)

b,

Xét tứ giác \(ADME\)

\(\widehat{A}=\widehat{D}=\widehat{E}=90^o\)

\(\Rightarrow\)Tứ giác \(ADME\) là hình chữ nhật

c,

Ta có: \(BM=MC=\dfrac{1}{2}\cdot BC=\dfrac{1}{2}\cdot10=5\)(cm)

Xét \(\Delta AMB\)

Có:

\(AM=MB\left(=5cm\right)\)

\(\Rightarrow\Delta AMB\) là tam giác cân

\(\Rightarrow MD\) là đường trung trực

\(\Rightarrow AD=\dfrac{1}{2}AB\)

Xét \(\Delta AMC\)

Có:

\(AM=MC\left(=5cm\right)\)

\(\Rightarrow\Delta AMC\) là tam giác cân

\(\Rightarrow ME\) là đường trung trực

\(\Rightarrow AE=\dfrac{1}{2}AC\)

Để tứ giác \(ADME\) là hình vuông thì

\(AD=AE\\ \Leftrightarrow\dfrac{1}{2}AB=\dfrac{1}{2}AC\\ \Rightarrow AB=AC\)

Vậy \(\Delta ABC\) là tam giác vuông cân thì tứ giác \(ADME\) là hình vuông

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)

hay AH=7,2(cm)

12 tháng 2 2022

Bài 4 : 

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=35cm\)

Bài 5 : 

Theo định lí Pytago tam giác MNO vuông tại O

\(OM=\sqrt{MN^2-ON^2}=33cm\)

Bài 4: 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{21^2+28^2}=35\left(cm\right)\)

Bài 5: 

\(OM=\sqrt{55^2-44^2}=33\left(cm\right)\)

a: BC=10cm

C=AB+BC+AC=6+8+10=24(cm)

b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔABD=ΔHBD

c: Ta có: ΔABD=ΔHBD

nên DA=DH

mà DH<DC

nên DA<DC

19 tháng 3 2022

a, Xét tg AHB và tg AHC, có:

AB=AC(tg cân)

góc AHB= góc AHC(=90o)

góc B= góc C(tg cân)

=> tg AHB= tg AHC(ch-gn)

b,Xét tg BMH và tg CNH, có: 

góc B= góc C(tg cân)

BH=CH(2 cạnh tương ứng)

góc BMH= góc CNH(=90o)

=> tg BMH= tg CNH(ch-gn)

Xét tg AMH và tg ANH, có: 

AH chung.

góc AMH= góc ANH(=90o)

MH=HN(2 cạnh tương ứng)

=> tg AMH= tg ANH(ch- cgv)

=> AM=AN(2 cạnh tương ứng)

=> tg AMN là tg cân.

c, Ta có:tg AMN cân tại A, tg ABC cân tại A nên, suy ra:

Các góc ở đáy bằng nhau: góc B= góc C= góc AMN= góc ANM.

Mà góc AMN và góc B ở vị trí đồng vị nên, suy ra:

MN // BC.

19 tháng 3 2022

Bạn tự vẽ hình nha. Máy mình ko vẽ đc.

18 tháng 10 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

=>AM=DE
b: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình

=>DE//BC và DE=1/2BC

=>DE//MC và DE=MC

Xét tứ giác DMCE có

DE//MC

DE=MC

Do đó: DMCE là hình bình hành

c: ΔHAC vuông tại H có HE là trung tuyến

nên \(HE=\dfrac{1}{2}AC\)

mà \(MD=\dfrac{1}{2}AC\)

nên HE=MD

Xét tứ giác DHME có

ED//MH

nên DHME là hình thang

mà HE=MD

nên DHME là hình thang cân

ΔHAB vuông tại H

mà HD là trung tuyến

nên HD=AD

EA=EH

DA=DH

Do đó: ED là đường trung trực của AH