K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Xét ΔABC vuông tại A có :

BC2 = AB2 + AC2 ( Định lí Pytago)

=> BC2 = 52 + 122

=> BC2 = 169

=> BC = 13 (cm)

1 tháng 10 2023

Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?

1 tháng 10 2023

 

 

23 tháng 1 2022

Xét tg ABC vuông tại A, có:

a. \(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(=>BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\sqrt{8}\right)^2+\left(\sqrt{17}\right)^2}=5\left(cm\right)\)

b. \(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(=>BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{3}{5}\right)^2+\left(\dfrac{4}{5}\right)^2}=1\left(cm\right)\)

23 tháng 1 2022

a, Xét Tam giác ABC vuôgn tại A

Theo định lí Pi-ta-go, ta có:

 \(AB^2+AC^2=BC^2\)

Hay \(\sqrt{8}+\sqrt{17}=\sqrt{25}=5\left(cm\right)\)

Vậy BC = 5 (cm)

b, Xét tam giác ABC vuôgn tại A

THeo định lí Pi-ta-go, ta có :

\(AB^2+AC^2=BC^2\)

hay \(\left(\dfrac{3}{5}\right)^2+\left(\dfrac{4}{5}\right)^2=\sqrt{\dfrac{9}{25}+\dfrac{16}{25}=1}\)

Vậy BC = 1cm

31 tháng 7 2017

Xét \(\Delta ABC\)vuông tại A

=>AB+AC2=BC2

32+AC2=52=> AC2=52-32= 25-9=16

=> AC=\(\sqrt{16}\)=4

Diện tích \(\Delta ABC\)  là: (ACxAB)/2=4x3/2=12/2=6(cm2)

Vậy: diện tích am giác ABC là 6 cm2

31 tháng 7 2017

bạn dùng định lí pitago để tính cạnh AC nhé. AC=căn 34. sau khi có 3 cạnh thì tính diện tích

20 tháng 8 2016

Tam giác ABC vuông tại A

=>AB2+AC2=BC2          (định lí Pytago)

Hay 52+(1/3BC)2=BC2

=>25+1/9BC2=BC2

=>25=8/9BC2

=>BC2=225/8

=>BC=\(\frac{15\sqrt{2}}{4}\)

=>AC=\(\frac{5\sqrt{2}}{4}\)

Vậy diện tích tam giác ABC là:

        5.\(\frac{5\sqrt{2}}{4}\)=\(\frac{25\sqrt{2}}{4}\)(cm2)

NV
3 tháng 10 2021

Ta có:

\(\left\{{}\begin{matrix}AB^2+AC^2=5^2+12^2=169\\BC^2=13^2=169\end{matrix}\right.\) \(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A (Pitago đảo)

\(cosB=\dfrac{AB}{BC}=\dfrac{5}{13}\Rightarrow B\approx67^023'\)

\(C=90^0-B=22^037'\)

24 tháng 11 2021

\(\text{Pytago: }AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\\ \Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx37^0\)

24 tháng 11 2021

Vì tam giác ABC vg tại A

=> BC2=BA2+AC2

=> 25=9+AC2

=> AC2=25-9

=> AC2=16

=> AC=4

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

14 tháng 12 2023

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=5^2+12^2=169\)

=>\(BC=\sqrt{169}=13\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{5}{13}\)

nên \(\widehat{B}\simeq23^0\)

Ta có: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}\simeq90^0-23^0=67^0\)

b: Ta có: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}=90^0-40^0=50^0\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(BC=\dfrac{AC}{sinB}=\dfrac{5}{sin40}\simeq7,78\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB^2=BC^2-AC^2\)

=>\(AB\simeq\sqrt{7,78^2-5^2}\simeq5,96\left(cm\right)\)