K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

(Bạn tự vẽ hình giùm)

a) Mình xin chỉnh lại đề:

Chứng minh: AC = BE; AC // BE

\(\Delta AMC\)và \(\Delta BME\)có: BM = MC (M là trung điểm BC)

\(\widehat{AMC}=\widehat{BME}\)(đối đỉnh)

AM = ME (gt)

=> \(\Delta AMC\)\(\Delta BME\)(c - g - c) => AC = BE (hai cạnh tương ứng)

và \(\widehat{ACM}=\widehat{EBM}\)(hai góc tương ứng) ở vị trí so le trong => AC // BE (đpcm)

c) Ta có \(\widehat{BME}=180^o-\widehat{EBM}-\widehat{BEM}\)(tổng ba góc của một tam giác)

=> \(\widehat{BME}\)= 180o - 50o - 25o = 105o

và \(\widehat{HBE}+\widehat{HEB}=90^o\) (\(\Delta BEH\)vuông tại H)

=> 50o + \(\widehat{HEB}\)= 90o

=> \(\widehat{HEB}=40^o\)

=> \(\widehat{MEB}+\widehat{HEM}=40^o\)

=> 25o + \(\widehat{HEM}\)= 40o

=> \(\widehat{HEM}\)= 15o

16 tháng 12 2016


A B C D E H M

16 tháng 12 2016

Làm tiếp nha:

Xét tứ giác ABEC có 2 đường chéo AE và BC cắt nhau tại trung điểm M của mỗi đường nên ABEC là hình bình hành.

=> \(\hept{\begin{cases}AB=CE\left(1\right)\\ABllCE\end{cases}}\)

a ) xét \(\Delta ABM\)và \(\Delta ECM\)có:

\(\hept{\begin{cases}MA=ME\left(gt\right)\\MB=MC\left(gt\right)\\AB=CE\left(cmt\right)\end{cases}}\)

---> \(\Delta ABM=\Delta ECM\left(c.c.c\right)\)

b) Xét \(\Delta ABD\) có BH là đường cao đồng thời đường trung tuyến nên \(\Delta ABD\) cân tại B.

---> BC là phân giác của ABD

\(\Delta ABD\)cân tại B ---> AB = BD (2)

Từ (1),(2) ---> BD = CE

14 tháng 12 2016

Xét tứ giác ABEC có 2 đường chéo AE và BC cắt nhau tại trung điểm M của mỗi đường nên ABEC là hình bình hành

\(\Rightarrow\begin{cases}AB=CE\left(1\right)\\AB\backslash\backslash CE\end{cases}\)

a,xét ΔABM và ΔECM có:

\(\begin{cases}MA=ME\left(gt\right)\\MB=MC\left(gt\right)\\AB=CE\left(cmt\right)\end{cases}\)

→ΔABM=ΔECM(c.c.c)

b,Xét ΔABD có BH là đường cao đồng thời là đường trung tuyến

nên ΔABD cân tại B

→BC là phân giác của \(\widehat{ABD}\)

ΔABD cân tại B →AB=BD(2)

Từ (1),(2)→BD=CE

30 tháng 12 2016

Mjk tra loi cau a nka

B C M K

Mjk ve hoi xau, pn thong cam nka

Vì tam giác ABM và ACM có: 

M1=M2(đối đỉnh dok pn)

AM=MK(gt)

BM=MC( gt)

=> tam giác ABM=tam giác ACM(c.g.c)

k ve dc tam giac nho nen mjk phai ghi la tam giac lun ak

a) Xét ∆ABM và ∆CME ta có : 

BM = MC ( M là trung điểm BC)

AM = ME 

AMB = CME ( đối đỉnh) 

=> ∆ABM = ∆CME(c.g.c)

b) Xét ∆AMC và ∆BME ta có : 

AM = ME 

BM = MC 

AMC = BME ( đối đỉnh) 

=> ∆AMC = ∆BME(c.g.c)

=> ACM = MBE 

Mà 2 góc này ở vị trí so le trong 

=> AC//BE 

c) Vì ∆AMB = ∆CME 

=> ABC = BCK 

Xét ∆IMB và ∆CMK ta có :

BM = MC 

BI = CK 

ABC = BCE (cmt)

=> ∆IMB = ∆CMK (c.g.c)

=> IMB = CMK 

Ta có : 

BMI + IMC = 180° ( kề bù) 

Mà IMB = CMK 

=> CMK + IMC = 180° 

=> IMK = 180° 

=> IMK là góc bẹt 

=> I , M , K thẳng hàng 

`a,`

Xét `\Delta AMC` và `\Delta EMB`:

\(\left\{{}\begin{matrix}\text{MB = MC (M là trung điểm của BC)}\\\widehat{\text{AMC}}=\widehat{\text{BME}}\left(\text{đối đỉnh}\right)\\\text{MA = ME (gt)}\end{matrix}\right.\)

`=> \Delta AMC = \Delta EMB (c-g-c)`

`b,`

Vì `\Delta AMC = \Delta EMB (a)`

`->` $\widehat {ACM} = \widehat {EBM} (\text {2 góc tương ứng})$

Mà `2` góc này nằm ở vị trí sole trong

`->` \(\text{AC // BE (tính chất 2 đường thẳng //)}\)

loading...

11 tháng 5 2023

Thank you
Love you:33

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//EC và AB=EC

c: Xét ΔBCD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔBCD cân tại C

d: Xét ΔOBC có

OM là đường cao

OM là đường trung tuyến

Do đó: ΔOBC cân tại O

Suy ra: OB=OC(1)

Xét ΔOBD có
OA là đường cao

OA là đường trung tuyến

Do đó: ΔOBD cân tại O

Suy ra: OB=OD(2)

Từ (1) và (2) suy ra OB=OC=OD

hay O cách đều ba đỉnh của ΔBDC

10 tháng 12 2018

tham khảo Câu hỏi của huỳnh thị tuyết như - Toán lớp 7 - Học toán với OnlineMath

10 tháng 12 2018

a,     Xét tam giác ABM và tam giác ECM có :    góc AMB= góc EMC (2 góc đối đỉnh)

                                                                               MA=ME (gt)

                                                                            MB =MC (gt)

Nên tam giác ABM = tam giác ECM (c-g-c)

b,  Vì tam giác ABM = tam giác ECM (cm câu a) nên góc ABM = góc ECM (2 góc tương ứng )

Mà góc ABM và góc ECM ở vị trí so le trong nên AB // CE

30 tháng 12 2016

Mình mới học lớp 6

Nên không biết nha

Chúc các bạn học giỏi

30 tháng 12 2016

thế cũng nói!