Cho tam giác ABC có \(\widehat{A}=90^o\); AB= 6cm; AC= 8cm. Kẻ AH vuông góc với BC ( \(H\in BC\)) I là trung điểm của cạnh AC, D là điểm đối xứng với H qua I.
a) Tứ giác AHCD là hình gì? Tại sao?
b) Tính độ dài đoạn thẳng AH.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BE||DM\) (cùng vuông góc AC)
Theo định lý Talet: \(\left\{{}\begin{matrix}\dfrac{MK}{EH}=\dfrac{CK}{CH}\\\dfrac{DK}{BH}=\dfrac{CK}{CH}\end{matrix}\right.\) \(\Rightarrow\dfrac{MK}{EH}=\dfrac{DK}{BH}\)
\(\Rightarrow\dfrac{BH}{EH}=\dfrac{DK}{MK}\)
Hai tam giác vuông AHE và ACD đồng dạng (chung góc A) \(\Rightarrow\dfrac{AH}{AC}=\dfrac{AE}{AD}\Rightarrow AH.AD=AC.AE\)
Tương tự CHE đồng dạng CAF \(\Rightarrow\dfrac{CH}{AC}=\dfrac{CE}{CF}\Rightarrow CH.CF=AC.CE\)
\(\Rightarrow AH.AD+CH.CF=AC.AE+AC.CE=AC\left(AE+CE\right)=AC^2\) (1)
Lại có 2 tam giác vuông ACD và DCM đồng dạng (chung góc C)
\(\Rightarrow\dfrac{AC}{CD}=\dfrac{CD}{CM}\Rightarrow AC=\dfrac{CD^2}{CM}\Rightarrow AC^2=\dfrac{CD^4}{CM^2}\) (2)
(1); (2) suy ra đpcm
Ta có:
\(\widehat{A}>\widehat{B}=\widehat{C}\left(90^0>45^0=45^0\right)\)
`@` Theo định lý quan hệ giữa góc và cạnh đối diện
`->`\(\text{BC > AC = AB}\).
b) Tam giác ABC vuông tại A có:
\(AB^2+AC^2=BC^2\)(Định lí Py-ta-go)
Thay \(6^2+8^2=BC^2\)
\(36+64=BC^2\)
=> \(BC^2=100\)
=> \(BC=\sqrt{100}=10cm\)
Vì đường trung tuyến Ah ứng với cạnh huyền BC
=> AH = 1/2 BC
=> AH = \(\frac{BC}{2}=\frac{10}{2}=5cm\)
a) Tứ giác AHCD có:
IH=ID(gt); IA=IC(gt)
=> Tứ giác AHCD là hình bình hành (1)
lại có: AH vuông góc với BC(gt)
=> \(\widehat{H}\)= \(^{90^0}\) (2)
Từ (1) và (2) => Tứ giác AHCD là hình chữ nhật