K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2021

Kẻ  AH \(\perp\) BC.

Xét tam giác ABC cân tại A có: AH là đường cao (AH \(\perp\) BC).

=> AH là trung tuyến (Tính chất các đường trong tam giác cân).

=> H là trung điểm của BC. => BH = \(\dfrac{1}{2}\) BC. => BH = \(\dfrac{1}{2}\)a.

Tam giác ABC cân tại A (gt). => ^ABC = (180o - 108o) : 2 = 36o.

Mà ^BAD = 36o (gt).

=> ^ABC = ^BAD = 36o.

Mà 2 góc này ở vị trí so le trong.

=> AD // BC (dhnb).

Mà AH \(\perp\) BC (cách vẽ).

=> AH \(\perp\) AD. => ^DAH = 90o. => ^MAH = 90o.

Kẻ MH // DB; M \(\in\) AD. 

Xét tứ giác DMHB có: 

+ MH // DB (cách vẽ).

+ MD // HB (do AD // BC).

=> Tứ giác DMHB là hình bình hành (dhnb). 

=> MH = DB và MD = BH (Tính chất hình bình hành).

Ta có: AD = MD + AM.

Mà AD = b (do AD = AC = b); MD = \(\dfrac{1}{2}\)a (do MD = BH = \(\dfrac{1}{2}\)a).

=> AM = b - \(\dfrac{1}{2}\)a.

Xét tam giác AHB vuông tại H có:

AB2 = AH+ BH2 (Định lý Py ta go).

Thay: b2 = AH+ ( \(\dfrac{1}{2}\)a)2.

<=> AH2 = b2 - \(\dfrac{1}{4}\)a2.

<=> AH = \(\sqrt{b^2-\dfrac{1}{2}a^2}\).

Xét tam giác MAH vuông tại A (^MAH = 90o) có:

\(MH^2=AM^2+AH^2\) (Định lý Py ta go).

Thay: MH2 = (b - \(\dfrac{1}{2}\)a)2 + (\(\sqrt{b^2-\dfrac{1}{2}a^2}\))2.

 MH2 = b2  - ab + \(\dfrac{1}{4}\)a2 + b2 - \(\dfrac{1}{4}\)a2.

MH2 = 2b2 - ab.

MH = \(\sqrt{2b^2-ab}\).

Mà MH = BD (cmt).

=> BD = \(\sqrt{2b^2-ab}\).

Chu vi tam giác ABD: BD + AD + AB = \(\sqrt{2b^2-ab}\) + b + b = \(\sqrt{2b^2-ab}\) + 2b.

 

 

a) Ta có: ABDˆ=900,ABD^=900 và ACDˆ=900ACD^=900

⇔ABDˆ=ACDˆ⇔ABD^=ACD^

⇒ABCˆ+CBDˆ=ACBˆ+BCDˆ⇒ABC^+CBD^=ACB^+BCD^

Mà ABCˆ=ACBˆABC^=ACB^ (Tam giác ABC cân tại A)

⇔CBDˆ=BCDˆ⇔CBD^=BCD^

⇔ΔBCD⇔ΔBCD cân tại D

b) Xét tam giác ABD và tam giác ACD, có:

AB=ACAB=AC (Tam giác ABC cân tại A)

BD=CD (Tam giác BCD cân tại D)

ABDˆ=ACDˆ=900

⇔ΔABD=ΔACD (Hai cạnh góc vuông)

⇔BADˆ=CADˆ(Hai cạnh tương ứng)

=> AD là tia phân giác góc A

Lại có: ADBˆ=ADCˆ (ΔABD=ΔACD)

=> DA là tia phân giác góc D

Học tốt

https://h.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%A2n+t%E1%BA%A1i+A.+Qua+B+k%E1%BA%BB+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AB,+qua+C+k%E1%BA%BB+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AC,+ch%C3%BAng+c%E1%BA%AFt+nhau+%E1%BB%9F+D.+Ch%E1%BB%A9ng+minh:++a.+Tam+gi%C3%A1c+BDC+c%C3%A2n.+++b.+AB+l%C3%A0+tia+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+A+++++++DA+l%C3%A0+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+D++c.+AD+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+BC+v%C3%A0+AD+%C4%91i+qua+trung+%C4%91i%E1%BB%83m+c%E1%BB%A7a+BC.&id=558420  

bạn tham khảo nhé

8 tháng 7 2015

a)Ta có: tam giác ABC là tam giác cân tại A.

=> góc B= góc C

Vì BD và CE là phân giác góc B và C

=> góc DBC = góc EBD = góc DCE = góc ECB

Xét tam giác EBC và tam giác DBC có:

góc ECB = góc DBC

góc BCD = góc EBC

Chung cạnh BC

=> tam giác EBC = tam giác DCB( g.c.g)

=> EC = DB

=> tứ giác BECD là hình thang cân (vì có 2 đường chéo bằng nhau)

b) mk chưa biết làm

8 tháng 7 2015

A B C E D

a)Gợi ý:

     Đầu tiên bạn chứng minh BEDC là hình thang, sau đó chứng minh nó là hình thang cân.

Ta có:

góc B = (1800 - Â) : 2 

rồi chứng minh tam giác EAD cân tại A, sau đó   => góc AED = góc B =  (1800 - Â) : 2

=> ED // BC   (2 góc đồng vị)

=> BECD là hình thang   (2 cạnh đối song song với nhau)

mà góc B = góc C   (tam giác ABC cân tại A)

=> BECD là hình thang cân   (2 góc kề 1 đáy bằng nhau)

bài b thì mk chưa học

13 tháng 1 2018

Câu 1 (Bạn tự vẽ hình giùm)

a) Mình xin chỉnh lại đề một chút: \(\Delta ABD=\Delta ACD\)

\(\Delta ABD\)và \(\Delta ACD\)có: AB = AC (\(\Delta ABC\)cân tại A)

BD = DC (D là trung điểm của BC)

Cạnh AD chung

=> \(\Delta ABD=\Delta ACD\) (c. c. c) (đpcm)

b) Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BAD}=\widehat{DAC}\)(hai góc tương ứng) => AD là tia phân giác của \(\widehat{BAC}\)(đpcm)

c) Mình xin chỉnh lại đề một chút: ​AD \(\perp\)BC tại D

Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BDA}=\widehat{CDA}\)(hai góc tương ứng)

Mà \(\widehat{BDA}+\widehat{CDA}\)= 180o (kề bù)

=> \(\widehat{BDA}=\widehat{CDA}=\frac{180^o}{2}\)= 90o => AD \(\perp\)BC tại D (đpcm)

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

cân tại A => goc C = goc B = 38 độ

góc A = 180 - goc C - góc B = 180 - 38 - 38 = 104 độ

Chúc ban hoc tot!