K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

a/ Giả sử phương trình AB là \(y=ax+b\)

\(A\left(2;4\right)\in AB\Rightarrow4=2a+b\text{ (1)}\)

\(B\left(4;6\right)\in AB\Rightarrow6=4a+b\text{ (2)}\)

Từ (1) và (2) suy ra \(a=1;\text{ }b=2\)

\(AB:y=x+2\)

Trung điểm của AB là \(M\left(\frac{2+4}{2};\text{ }\frac{4+6}{2}\right)\text{ hay }M\left(3;5\right)\)

Gọi phương trình trung trực AB là \(d:y=a_1x+b_1\)

d vuông góc với AB nên \(a'.a=-1\Rightarrow a'=-\frac{1}{a}=-\frac{1}{1}=-1\)

\(\Rightarrow d:y=-x+b_1\)

\(M\in d\Rightarrow5=-3+b_1\Rightarrow b_1=8\)

\(\text{Vậy }d:y=-x+8\)

b/

Làm tương tự câu a, sau đó đồng nhất hệ số \(2m+3=a_1;\text{ }-3n+4=b_1\)

7 tháng 10 2023

d

13 tháng 10 2023

a) \(A=2\left(1+2+2^2+...+2^{59}\right)⋮2\)

b) \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

c) \(A=2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^5+...+2^{58}\right)⋮7\)

13 tháng 10 2023

a) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰

= 2.(1 + 2 + 2² + ... + 2⁵⁸ + 2⁵⁹) 2

Vậy A ⋮ 2

b) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰

= (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)

= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)

= 2.3 + 2³.3 + ... + 2⁵⁹.3

= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3

Vậy A ⋮ 3

c) A = 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + ... + 2⁵⁸ + 2⁵⁹ + 2⁶⁰

= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)

= 2.7 + 2⁴.7 + ... + 2⁵⁸.7

= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7

Vậy A ⋮ 7

18 tháng 10 2021

a)A=2(1+2+2^2+...+2^19)

   =>A chia hết cho 2

b)A=(2+2^2)+(2^3+2^4)+...+(2^19+2^20)

   A=2(1+2)+2^3(1+2)+...+2^19(1+2)

   A=2.3+2^3.3+...+2^19.3

   A=3(2+2^3+...+2^19)

   =>A chia hết cho 3

c)A=(2+2^3)+(2^2+2^4)+...+(2^18+2^20)

   A=2(1+2^2)+2^2(1+2^2)+...+2^18(1+2^2)

   A=2.5+2^2.5+...+2^18.5

   A=5(2+2^2+...+2^18)

   =>A chia hết cho 5

28 tháng 9 2024

gythgygy

9 tháng 10 2021

nhanh nha đng cần

5 tháng 10 2022

hahâhahâhahâhh làm tưcjccjcj nguyễn tập an ăn cút ahaaaa

 

29 tháng 10 2023

a) \(A=1+2+2^2+...+2^{41}\)

\(2A=2+2^2+...+2^{42}\)

\(2A-A=2+2^2+...+2^{42}-1-2-2^2-...-2^{41}\)

\(A=2^{42}-1\)

b) \(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{40}+2^{41}\right)\)

\(A=3+2^2\cdot3+...+2^{40}\cdot3\)

\(A=3\cdot\left(1+2^2+...+2^{40}\right)\)

Vậy A ⋮ 3

__________

\(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2+2^2\right)+...+\left(2^{39}+2^{40}+2^{41}\right)\)

\(A=7+...+2^{39}\cdot7\)

\(A=7\cdot\left(1+..+2^{39}\right)\)

Vậy: A ⋮ 7

c) \(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2^2\right)+\left(2+2^3\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)

\(A=5+2\cdot5+...+2^{38}\cdot5+2^{39}\cdot5\)

\(A=5\cdot\left(1+2+...+2^{39}\right)\)

A ⋮ 5 nên số dư của A chia cho 5 là 0 

29 tháng 10 2023

Xem lại phần c dòng này nhé a

\(A=\left(1+2^2\right)+\left(2^2+2^4\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)

có 2 số \(2^2\)?

9 tháng 10 2021
Tui có 4 nick đó
9 tháng 10 2021

NHANH NHA DNG CẦN

MA NÀO GIÚP TUI ĐI

2 tháng 9 2019

ta có: a + b=-2 ; a^2 + b^2 = 52

=> (a+b)^2 = 4 => a^2 + 2ab + b^2 = 4

=> 52 + 2ab= 4

=> 48= -2ab

=> ab= -24

a^3 + b^3 = (a+b)( a^2-ab+ b^2)

=> a^3 + b^3 = -2.(52+24)= -2. 76= -152

Mình có một bài toán CMR a^7 - a chia hết cho 7 không biết giải nên lên hỏi bác google thì nó giải như này:a^7 - a = a(a^6 - 1) = a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1)Nếu a = 7k (k thuộc Z) thì a chia hết cho 7Nếu a = 7k + 1 (k thuộc Z) thì a^2 - 1 = 49k^2 + 14k chia hết cho 7Nếu a = 7k + 2 (k thuộc Z) thì a2^ + a + 1 = 49k^2 + 35k + 7 chia hết cho 7Nếu a = 7k + 3 (k thuộc Z) thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7Trong trường...
Đọc tiếp

Mình có một bài toán CMR a^7 - a chia hết cho 7 không biết giải nên lên hỏi bác google thì nó giải như này:

a^7 - a = a(a^6 - 1) = a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1)

Nếu a = 7k (k thuộc Z) thì a chia hết cho 7

Nếu a = 7k + 1 (k thuộc Z) thì a^2 - 1 = 49k^2 + 14k chia hết cho 7

Nếu a = 7k + 2 (k thuộc Z) thì a2^ + a + 1 = 49k^2 + 35k + 7 chia hết cho 7

Nếu a = 7k + 3 (k thuộc Z) thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7

Trong trường hợp nào củng có một thừa số chia hết cho 7

Vậy: a^7 - a chia hết cho 7

Mình không hiểu vài chỗ:

- Nếu a = 7k nghĩa là sao?

- Nếu a = 7k + 1 (k thuộc Z) thì a^2 - 1 = 49k^2 + 14k chia hết cho 7. Cái khúc "thì a^2 - 1 = 49k^2 + 14k chia hết cho 7" là gì?

- Tương tự, Nếu a = 7k + 3 (k thuộc Z) thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7. Cái khúc "thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7"  là sao?

- a^7 - a sao lại phân tích thành a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1) được?

- Phân tích thành a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1) để làm gì?

Nhờ các bạn giải thích hộ mình. Mình cảm ơn trước.

0