Tìm m ∈ ( 0 ; 5 6 ) sao cho hình phẳng giới hạn bởi các đường y = x 3 3 + m x 2 - 2 x - 2 m - 1 3 , x=0, x=2, y=0 có diện tích bằng 4
A. m = 1 2
B. m = 2 3
C. m = 1 4
D. m = 3 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (*) m = 0 => x = \(\dfrac{7}{8}\) (loại)
(*) \(m\ne0\) Phương trình có nghiệm
\(\Delta=\left[2\left(m-4\right)\right]^2-4m\left(m+7\right)=-60m+64\ge0\Leftrightarrow m\le\dfrac{16}{15}\)
Hệ thức Viet kết hợp 4x1 + 3x2 = 1
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1+x_2=\dfrac{8-2m}{m}\\x_1=2x_2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1=\dfrac{16-4m}{3m}\\x_2=\dfrac{8-2m}{3m}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{16-4m}{3m}.\dfrac{8-2m}{3m}=\dfrac{m+7}{m}\)
\(\Leftrightarrow2\left(8-2m\right)^2=9m\left(m+7\right)\)
\(\Leftrightarrow8m^2-64m+128=9m^2+63m\)
\(\Leftrightarrow m^2+127m-128=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=128\left(\text{loại}\right)\end{matrix}\right.\)<=> m = 1
\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)
\(b,\left(m-1\right)x^2-2mx+m-2=0\)
\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)
\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)
\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)
\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)
\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)
ĐKXĐ: \(x\ge0\)
\(\left(x^2-x-m\right)\sqrt{x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)
Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm
Do đó:
a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)
b. Để pt có 2 nghiệm pb
TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0
\(\Leftrightarrow m=0\)
TH2: (1) có 2 nghiệm trái dấu
\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)
\(\Rightarrow m\ge0\)
c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \dfrac{25}{12}\)
\(a=-1< 0;\Delta=\left(2\sqrt{m}-1\right)^2+4\left(\sqrt{m}-m\right)=4m-4\sqrt{m}+1+4\sqrt{m}-4m=1>0\)
a/ \(f\left(x\right)\ge0\) vô nghiệm \(\Leftrightarrow f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\left(tm\right)\\\Delta< 0\left(voly\right)\end{matrix}\right.\)
Vậy ko tồn tại m để ....
b/ \(f\left(x\right)\ge0,\forall x\in\left[1;2\right]\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}1< x_1< x_2\\x_1< x_2< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-1.f\left(1\right)>0\\\dfrac{x_1+x_2}{2}-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}-1.f\left(2\right)>0\\\dfrac{x_1+x_2}{2}-2< 0\end{matrix}\right.\end{matrix}\right.\)
\(\left(1\right)\left\{{}\begin{matrix}-1+2\sqrt{m}-1-m+\sqrt{m}< 0\\\sqrt{m}-\dfrac{1}{2}-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-3\sqrt{m}+2>0\\\sqrt{m}>\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}0< m< 1\\m>2\end{matrix}\right.\\m>\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow m>\dfrac{9}{4}\)
\(\left(2\right)\left\{{}\begin{matrix}-4+4\sqrt{m}-2-m+\sqrt{m}< 0\\\sqrt{m}-\dfrac{1}{2}-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-5\sqrt{m}+6>0\\\sqrt{m}< \dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}0< m< 2\\m>3\end{matrix}\right.\\0\le m< \dfrac{25}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0< m< 2\\3< m< \dfrac{25}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m>\dfrac{9}{4}\\0< m< 2\\3< m< \dfrac{25}{4}\end{matrix}\right.\)
Ta có \(y'=-3x^2+6mx\)
Để hàm số đã cho nghịch biến trên \(ℝ\) thì
\(f\left(x\right)=-3x^2+6mx\le0,\forall x\inℝ\)
Thế thì \(\Delta'=9m^2-\left(-3\right).0\le0\) \(\Leftrightarrow m=0\)
Vậy để hàm số đã cho nghịch biến trên \(ℝ\) thì \(m=0\)
a: \(x^2+\left(2m+1\right)x+m^2-3=0\)
\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2-3\right)\)
\(=4m^2+4m+1-4m^2+12=4m+13\)
Để phương trình có nghiệm kép thì 4m+13=0
=>\(m=-\dfrac{13}{4}\)
Thay m=-13/4 vào phương trình, ta được:
\(x^2+\left(2\cdot\dfrac{-13}{4}+1\right)x+\left(-\dfrac{13}{4}\right)^2-3=0\)
=>\(x^2-\dfrac{11}{2}x+\dfrac{121}{16}=0\)
=>\(\left(x-\dfrac{11}{4}\right)^2=0\)
=>x-11/4=0
=>x=11/4
b: TH1: m=2
Phương trình sẽ trở thành \(\left(2+1\right)x+2-3=0\)
=>3x-1=0
=>3x=1
=>\(x=\dfrac{1}{3}\)
=>Khi m=2 thì phương trình có nghiệm kép là x=1/3
TH2: m<>2
\(\text{Δ}=\left(m+1\right)^2-4\left(m-2\right)\left(m-3\right)\)
\(=m^2+2m+1-4\left(m^2-5m+6\right)\)
\(=m^2+2m+1-4m^2+20m-24\)
\(=-3m^2+22m-23\)
Để phương trình có nghiệm kép thì Δ=0
=>\(-3m^2+22m-23=0\)
=>\(m=\dfrac{11\pm2\sqrt{13}}{3}\)
*Khi \(m=\dfrac{11+2\sqrt{13}}{3}\) thì \(x_1+x_2=\dfrac{-m-1}{m-2}=\dfrac{2-2\sqrt{13}}{3}\)
=>\(x_1=x_2=\dfrac{1-\sqrt{13}}{3}\)
*Khi \(m=\dfrac{11-2\sqrt{13}}{3}\) thì \(x_1+x_2=\dfrac{-m-1}{m-2}=\dfrac{2+2\sqrt{13}}{3}\)
=>\(x_1=x_2=\dfrac{1+\sqrt{13}}{3}\)
c: TH1: m=0
Phương trình sẽ trở thành
\(0x^2-\left(1-2\cdot0\right)x+0=0\)
=>-x=0
=>x=0
=>Nhận
TH2: m<>0
\(\text{Δ}=\left(-1+2m\right)^2-4\cdot m\cdot m\)
\(=4m^2-4m+1-4m^2=-4m+1\)
Để phương trình có nghiệm kép thì -4m+1=0
=>-4m=-1
=>\(m=\dfrac{1}{4}\)
Khi m=1/4 thì \(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-1+2m\right]}{m}=\dfrac{-2m+1}{m}\)
=>\(x_1+x_2=\dfrac{-2\cdot\dfrac{1}{4}+1}{\dfrac{1}{4}}=\dfrac{-\dfrac{1}{2}+1}{\dfrac{1}{4}}=\dfrac{1}{2}:\dfrac{1}{4}=2\)
=>\(x_1=x_2=\dfrac{2}{2}=1\)
\(\Leftrightarrow\Delta=4\left(m-2\right)^2-4m\left(m-3\right)=0\\ \Leftrightarrow4m^2-16m+16-4m^2+12m=0\\ \Leftrightarrow16-4m=0\\ \Leftrightarrow m=4\)
Chọn B