K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

Ta có :

\(\frac{4x}{5}=\frac{3y}{2}\)

\(\Rightarrow\frac{4x}{5}:300=\frac{3y}{2}:300\)

\(\Rightarrow\frac{x}{375}=\frac{y}{200}\)

\(\frac{4y}{5}=\frac{5z}{3}\)

\(\Rightarrow\frac{4y}{5}:160=\frac{5z}{3}:160\)

\(\Rightarrow\frac{y}{200}=\frac{z}{96}\)

\(\Rightarrow\frac{x}{375}=\frac{y}{200}=\frac{z}{96}\)

\(\Rightarrow\frac{x}{375}=\frac{y}{200}=\frac{2x}{750}=\frac{3y}{600}=\frac{z}{96}\)

\(2x-3y+4=5.34=170\)

\(\Rightarrow2x-3y=170-4=166\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\Rightarrow\frac{x}{375}=\frac{y}{200}=\frac{2x}{750}=\frac{3y}{600}=\frac{z}{96}=\frac{2x-3y}{750-600}=\frac{166}{150}=\frac{83}{75}\)

\(\frac{x}{375}=\frac{83}{75}\Rightarrow x=415\)

\(\frac{y}{200}=\frac{83}{75}\Rightarrow y=221\frac{1}{3}\)

\(\frac{z}{96}=\frac{83}{75}\Rightarrow z=106,24\)

15 tháng 4 2020

a) Vì x-2/x-1 = x+4/x+7 nên: (x-2)(x+7) = (x+4)(x-1)

     =>   x^2 - 2x + 7x - 14 = x^2 + 4x - x - 4

     =>   5x - 14 = 3x - 4

     =>   5x - 3x = -4 + 14

     =>   2x = 10

     =>   x = 5

Vậy x = 5

b) Ta có:

   +) 4x = 3y => x/3 = y/4 => x/15 = y/20   (*)

   +) 7y = 5z => y/5 = z/7 => y/20 = z/28   (**)

Từ (*) và(**) Suy ra x/15 = y/20 = z/28

Áp dunhj tính chất dãy tỉ số bằng nhau và 2x - 3y +z = 6 ta có:

   x/15 = y/20 = z/28 = (2x-3y+z) / (2.15-3.20+28) = 6/-2 = -3

Do đó: 

   +) x/15 = -3 => x = -3.15 = -45

   +) y/20 = -3 => y = -3.20 = -60

   +) z/28 = -3 => z = -3.28 = -84

Vậy ...

20 tháng 7 2018

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\Rightarrow\frac{4x}{12}=\frac{3y}{24}=\frac{2z}{10}=\frac{4x+4y-2z}{12+24-10}=\frac{96}{26}=\frac{48}{13}\)

\(\Rightarrow x=\frac{48}{13}\times3=\frac{144}{13}\)

    \(y=\frac{48}{13}\times8=\frac{384}{13}\)

   \(z=\frac{48}{13}\times5=\frac{240}{13}\)

Vậy ....

20 tháng 7 2018

Áp dụng t/c DTSBN ta có:

\(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=\frac{4x+3y-2z}{4.3+3.8-2.5}=\frac{48}{13}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{48}{13}\Rightarrow x=\frac{144}{13}\\\frac{y}{8}=\frac{48}{13}\Rightarrow y=\frac{384}{13}\\\frac{z}{5}=\frac{48}{13}\Rightarrow z=\frac{240}{13}\end{cases}}\)

Vậy \(x=\frac{144}{13};y=\frac{384}{13};z=\frac{240}{13}\)

hok tốt!

21 tháng 9 2019

b) Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}.\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}.\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)\(x+y+z=92.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2.\)

\(\left\{{}\begin{matrix}\frac{x}{10}=2\Rightarrow x=2.10=20\\\frac{y}{15}=2\Rightarrow y=2.15=30\\\frac{z}{21}=2\Rightarrow z=2.21=42\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(20;30;42\right).\)

c) Ta có: \(2x=3y=5z.\)

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)\(x+y-z=95.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y-z}{3+5-2}=\frac{95}{6}.\)

\(\left\{{}\begin{matrix}\frac{x}{3}=\frac{95}{6}\Rightarrow x=\frac{95}{6}.3=\frac{95}{2}\\\frac{y}{5}=\frac{95}{6}\Rightarrow y=\frac{95}{6}.5=\frac{475}{6}\\\frac{z}{2}=\frac{95}{6}\Rightarrow z=\frac{95}{6}.2=\frac{95}{3}\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(\frac{95}{2};\frac{475}{6};\frac{95}{3}\right).\)

Chúc bạn học tốt!

15 tháng 12 2021

1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)

2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)

3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)

Áp dụng t/c dtsbn:

\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)

1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{3}=\dfrac{z}{3}=\dfrac{2x-3y+3z}{2\cdot6-3\cdot3+3\cdot3}=\dfrac{21}{12}=\dfrac{7}{4}\)

Do đó: x=21/2; y=21/4; z=21/4

2: ÁP dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{-4}=\dfrac{4x-3y-2z}{4\cdot2-3\cdot\left(-3\right)-2\cdot\left(-4\right)}=\dfrac{1}{25}\)

Do đó: x=2/25; y=-3/25; z=-4/25

3: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x+1}{3}=\dfrac{y+2}{4}=\dfrac{z-3}{5}=\dfrac{x+y+z+1+2-3}{3+4+5}=\dfrac{18}{12}=\dfrac{3}{2}\)

Do đó: \(\left\{{}\begin{matrix}x+1=\dfrac{9}{2}\\y+2=6\\z-3=\dfrac{15}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{2}\\y=4\\z=\dfrac{21}{2}\end{matrix}\right.\)

Gợi ý nhá

Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.

b)  Bạn chỉ cần cho tử và mẫu mũ 3 lên.  theé là dễ r

27 tháng 10 2018

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

tự tính tiếp =)