K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

Đáp án D

28 tháng 3 2018

Đáp án A

18 tháng 10 2018

9 tháng 2 2019


AH
Akai Haruma
Giáo viên
19 tháng 12 2021

Lời giải:
Để $(m^2-4)x=m(m-2)$ có nghiệm duy nhất thì $m^2-4\neq 0$

$\Leftrightarrow (m-2)(m+2)\neq 0$
$\Leftrightarrow m\neq \pm 2$
Mà $m$ nguyên và $m\in [-5;5]$ nên $m\in\left\{-5; -4; -3; -1; 0; 1;3;4;5\right\}$

7 tháng 2 2017

14 tháng 2 2017

Chọn D

Phương pháp:

Sử dụng: Hàm số y = ax+b đồng biến ⇔ a > 0, từ đó kết hợp điều kiện đề bài để tìm các giá trị của m.

Cách giải:

Hàm số y = (m-2)x + 2 đồng biến trên  ℝ ⇔ m - 2 > 0  ⇔ m > 2

Mà  => có 2016 giá trị nguyên của m thỏa mãn đề bài.

9 tháng 9 2017

Nếu  m = 0  thì phương trình trở thành  1 = 0 : vô nghiệm.

Khi  m ≠ 0 , phương trình đã cho có nghiệm khi và chỉ khi

∆ = m 2 - 4 m ≥ 0 ⇔ m ≤ 0 m ≥ 4

Kết hợp điều kiện  m ≠ 0 , ta được  m < 0 m ≥ 4

Mà m Z và m [−10; 10] m {−10; −9; −8;...; −1} {4; 5; 6;...; 10}.

Vậy có tất cả 17 giá trị nguyên m thỏa mãn bài toán.

Đáp án cần chọn là: A

5 tháng 3 2019

Dựa vào BBT, ta thấy phương trình có nghiệm duy nhất 

Ta có y = e x  là hàm  đồng biến trên ℝ  và  y = e x > 0 với mọi x ∈ ℝ  có đồ thị  (C)(xem hình 1).

Do đó:

= Nếu m < 0 thì y = m(x+1) là hàm số nghịch biến trên , có đồ thị là một đường thẳng luôn qua điểm (-1;0)  nên luôn cắt đồ thị (C):   y = e x  tại duy nhất một điểm.

= Nếu m = 0 phương trình vô nghiệm (do  y = e x > 0).

= Nếu m > 0 để phương trình có duy nhất một nghiệm khi và chỉ khi đường thẳng 

 là tiếp tuyến của (C) (như hình 2)

11 tháng 3 2019

+) Phương trình ban đầu có nghiệm khi và chỉ khi phương trình bậc hai ẩn t có nghiệm dương.

Cách giải: