K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2019

hello vị lài

NV
18 tháng 11 2021

1.

Do tung độ của 2 vecto cùng dấu nên 2 vecto cùng hướng khi tọa độ của chúng tương ứng tỉ lệ, hay:

\(\dfrac{m}{1}=\dfrac{6}{2}\Rightarrow m=3\)

Do \(3\in\left(2;4\right)\) nên B là đáp án đúng

2.

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(2;2\right)\\\overrightarrow{AC}=\left(-6;m-2\right)\end{matrix}\right.\)

3 điểm A,B,C thẳng hàng khi hai vecto trên cùng phương hay tọa độ của chúng tương ứng tỉ lệ:

\(\dfrac{-6}{2}=\dfrac{m-2}{2}\Rightarrow m-2=-6\Rightarrow m=-4\in\left(-5;-2\right)\)

12 tháng 6 2021

Có các phần tử của A là bội của 6

Các phần tử của B là bội của 15

Các phần tử của C là bội của 30

mà [6;15]=30

=> Những phần tử vừa chia hết cho 6; vừa chia hết cho 15 thì sẽ chia hết cho 30

Hay \(C=A\cap B\) 

24 tháng 4 2023

Có: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\Leftrightarrow 2ab-2bc-2ca=0\)

\(\Rightarrow A=\sqrt{a^2+b^2+c^2+2ab-2bc-2ca}=\sqrt{(a+b-c)^2}=|a+b-c|\)

⇒ A là số hữu tỉ

18 tháng 5 2017

Admin ơi,bài này sai đề

18 tháng 5 2017

a, Ta có:\(8+15=23;8+4=12;45+15=60;45+4=49\)

\(\Rightarrow\) Các tập hợp của C là : \(\left\{12;23;49;60\right\}\)

b, Ta có:

\(8-4=4;45-15=30;45-4=41\)

\(\Rightarrow\) Các tập hợp của D là : \(\left\{4;30;41\right\}\)

c, Ta có:

\(8.15=120;8.4=32;45.15=675;45.4=180\)

\(\Rightarrow\) Các tập hợp của E là : \(\left\{32;120;180;675\right\}\)

d, Ta có:

\(8:4=2;45:15=3\)

\(\Rightarrow\) Các tập hợp của G là: \(\left\{2;3\right\}\)

AH
Akai Haruma
Giáo viên
13 tháng 3 2022

Lời giải:
Do $0\leq a,b,c\le1 1$ nên: \(\text{VT}\leq \frac{a+b+c}{1+abc}\)

Giờ ta cần cm: $a+b+c\leq 2(1+abc)(*)$

Thật vậy:
$c(a-1)(b-1)\geq 0$

$\Leftrightarrow c(ab-a-b+1)\geq 0$

$\Leftrightarrow abc\geq ac+bc-c$

$\Leftrightarrow 2(abc+1)\geq ac+bc-c+abc+2$

Mà:

$ac+bc-c+abc+2-(a+b+c)=abc+(a+b)(c-1)-2(c-1)$

$=abc+(a+b-2)(c-1)\geq 0$ với mọi $0\leq a,b,c\leq 1$

$\Rightarrow ac+bc-c+abc+2\geq a+b+c$

$\Rightarrow 2(abc+1)\geq a+b+c$

Do đó BĐT $(*)$ đúng nên ta có đpcm.

9 tháng 5 2022

Biến đổi `:`

`a/b > ( a + c )/(  b + c )`

`<=> a( b + c ) > b( a + c )`

`<=> ab + ac > ab + bc`

`<=> ab+ac-ab>ab+bc-ab`

`<=> ac>bc`

`<=> ( ac )/( bc ) = a/b > 1` `(` luôn đúng `)`

 

9 tháng 5 2022

\(\dfrac{a}{b}=\dfrac{a\left(b+c\right)}{b\left(b+c\right)}=\dfrac{ab}{b\left(b+c\right)}+\dfrac{ac}{b\left(b+c\right)};\dfrac{a+c}{b+c}=\dfrac{b\left(a+c\right)}{b\left(b+c\right)}=\dfrac{ab}{b\left(b+c\right)}+\dfrac{bc}{b\left(b+c\right)}\)

Ta có \(\dfrac{a}{b}>1,\) suy ra \(a>b\) nên ac > bc. Do đó, \(\dfrac{ac}{b\left(b+c\right)}>\dfrac{bc}{b\left(b+c\right)}\), suy ra \(\dfrac{a}{b}>\dfrac{a+c}{b+c}\)