K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

c. S3 = 165 + 215 chia hết cho 33

ta thấy: 16^5=2^20
=> A=16^5 + 2^15 = 2^20 + 2^15
= 2^15.2^5 + 2^15
= 2^15(2^5+1)
=2^15.33
số này luôn chia hết cho 33

2 tháng 1 2017

b. S2 = 2 + 22 + 23 + 24 +........... + 2100 chia hết cho 31

= 2(1 + 2 + 22 + 23 + 24 ) + 26( 1 + 2 + 22 + 23 + 24 ) + ....+ (1 + 2 + 22 + 23 + 24 )296

= 2 x 31 + 26 x 31 + ..... + 296 x 31 = 31 x ( 2 + 26 + ..... + 296 )

=> 2 + 22 + 23 + 24 +........... + 2100 chia hết cho 31

5 tháng 11 2020

Giải:

a)    A = 21 + 22 + 23 + 24 + .............. + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7

=>  A \(⋮\)cả 3 và 7

Vây  A \(⋮\)cả 3 và 7

b) B = 31 + 32 + 33 + 34 + ............... + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n 

mà 32 \(⋮\)4

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13

=> B \(⋮\)cả 4 và 13

Vậy  B \(⋮\)cả 4 và 13

c)  C = 51 + 52 + 53 + 54 + ................... + 52010

Ta có : 

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 54 \(⋮\)6

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31 

=> C \(⋮\)cả 6 và 31

Vậy C \(⋮\)cả 6 và 31

d)  D = 71 + 72 + 73 + 74 + ...................... + 72010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 72 \(⋮\)8

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57

=> D \(⋮\)cả 8 và 57

Vậy  D \(⋮\)cả 8 và 57

Học tốt!!!

18 tháng 12 2018

\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)

\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)

b, tự tương

18 tháng 12 2018

\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\)         (  vì \(28a+28⋮7\) ) 

                     \(\Leftrightarrow30a+33⋮7\)

                     \(\Leftrightarrow3.\left(10a+11\right)⋮7\)

                     \(\Leftrightarrow10a+11⋮7\)   (  vì \(\left(3;7\right)=1\) ) 

Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)

Câu b bn xem lại đề hộ mk chút nhé!

16 tháng 10 2016

Ta có :

\(55^{n+1}-55^n=55^n\times55-55^n\)

                             \(=55^n\left(55-1\right)\)

                               \(=55^n\times54\) chia hết cho 54

K NHÉ

23 tháng 10 2016

có : 5+52+53+....+5100

=(5+52)+(53+54)+...+(599+5100)

=5*(5+1)+53*(5+1)+...+599*(5+1)

=5*6+...+599*6

=6*(5+53+...+599)

A=6*1so bat ki

vay A chia het cho 6

23 tháng 10 2016

bạn kết bạn với mình nha Nina

Ta có : \(a-11b+3c⋮17\)

\(\Leftrightarrow19.\left(a-11b+3c\right)⋮17\)

\(\Leftrightarrow19a-209b+57c⋮17\)

\(\Leftrightarrow\left(17a-204b+51c\right)+\left(2a-5b+6c\right)⋮17\)

\(\Rightarrow\left(2a-5b+6c\right)⋮17\)(vì 17a - 204b + 51c đã chia hết cho 17 ) 

\(\RightarrowĐCPM\) 

14 tháng 5 2021

nhóm cái đầu với cái cuối

8 tháng 10 2016

cm bằng qui nạp
thử n=1 ta có n^3+5n = 6 => dúng
giả sử đúng với n =k
ta cm đúng với n= k+1
(k+1)^3+5(k+1) = k^3 +5k + 3k^2 +3k +6
vì k^3 +5k chia hết cho 6, và 6 chia hết cho 6 nên ta cần cm 3k^2 +3k chia hết cho 6 <=> k^2 +k chia hết cho 2
mà k(k +1) chia hết cho 2vì nếu k lẻ thì k+1 chẳn => chia hết
nế k chẳn thì đương nhiên chia hết
vậy đúng n= k+ 1