Cho tam giác ABC có A(-2; 4); B (5; 5); C( 6; -2). Đường tròn ngoại tiếp tam giác ABC có phương trình là:
A. x 2 + y 2 − 2 x − y + 20 = 0.
B. x − 2 2 + y − 1 2 = 20.
C. x 2 + y 2 − 4 x − 2 y + 20 = 0.
D. x 2 + y 2 − 4 x − 2 y − 20 = 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)
nên ΔIBC cân tại I
2: Xét ΔABD và ΔACE có
\(\widehat{A}\) chung
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
a: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của EM
Do đó: AEBM là hình bình hành
mà MA=MB
nên AEBM là hình thoi