cho tứ diện ABCD và 3 điểm P , Q lần lượt là trung điểm của AB và CD ; điểm R nằm trên cạnh BC sao cho BR=2RC . Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD . chứng minh rằng AS=2SD .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện GM = GN mới chứng tỏ điểm G nằm trên mặt phẳng trung trực của đoạn thẳng MN.
Đáp án A
Các đường thẳng MN, NP, PQ, QM cùng nằm trong một mặt phẳng và BC, AD cùng song song với mặt phẳng (MNPQ). Suy ra ba vecto M P → , B C → , A D → đồng phẳng
Đáp án B
Có thể loại các phương án A, B và D vì các cặp ba vecto ( M P → , M B → , v à Q C → ) , ( M P → , M N → , P D → ) và ( M P → , M N → v à Q C → ) đều không đồng phẳng.
Phương án C đúng vì : M P → = M A → + A P → = M A → - m P D →
Đáp án C