Cho x, y và a làcác số thỏa mãn điều kiện:
X+y=2a-1. ; x^2+y^2=2a^2+4a-11
Xác định a để xy đạt giá trị bé nhất , tìm giá trị đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{3}-\frac{1}{y}=\frac{1}{3}\Rightarrow\frac{xy}{3y}-\frac{3}{3y}=\frac{1}{3}\Rightarrow\frac{xy-3}{3y}=\frac{1}{3}\)
Quy đồng mẫu ta có:
\(\frac{xy-3}{3y}=\frac{y}{3y}\Rightarrow xy-3=y\Rightarrow xy-y=3\Rightarrow x.\left(y-1\right)=3\)
Mà 3=3.1=1.3=(-1).(-3)=(-3).(-1) nên
TH1: x=3 ; y-1=1 => y=2
TH2: x=1 ; y-1=3 => y=4
TH3: x=-1 ; y-1=-3 => y=-2
TH4: x=-3 ; y-1=-1 => y=0
\(K=\left(4xy+\dfrac{1}{4xy}\right)+\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{5}{4xy}\)
\(K\ge2\sqrt{\dfrac{4xy}{4xy}}+\dfrac{4}{x^2+y^2+2xy}+\dfrac{5}{\left(x+y\right)^2}\ge2+4+5=11\)
\(K_{min}=11\) khi \(x=y=\dfrac{1}{2}\)
x + y = 9. Vì 22 = 4 + 45 = 72 = 49. Do đó x + y = 2 + 7 + 9
tích nha
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
Ta chứng minh BĐT phụ sau với số dương:
\(\frac{a^4+b^4}{a^3+b^3}\ge\frac{a+b}{2}\Leftrightarrow2a^4+2b^4\ge a^4+b^4+a^3b+ab^3\)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)
Áp dụng vào bài toán:
\(\Rightarrow VT\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=2008\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=\frac{2008}{3}\)