Cho AH=4 cm; Sabc=20 cm vuông. Tìm AB,AC
Gợi ý :M là trung điểm của BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác vuông ABC vuông tại A sao cho đường cao AH biết AB= 3 cm , AC = 4 cm , tính BC AH BH CH
Áp dụng định lý Pytago vào tam giác ABC(góc A=90) có:
BC2=AB2+AC2
<=>BC2=32+42
<=>BC2=25
<=>BC=5(cm)
Áp dụng HTL vào tam giác ABC vuông tại A có đường cao AH được:
AB.AC=BC.AH
<=>3.4=5.AH
<=> AH=\(\dfrac{3.4}{5}\)
<=>AH=2,4(cm)
Áp dụng định lý Pytago vào tam giác AHB vuông tại H có:
AB2=AH2+BH2
<=>BH2=32-2,42
<=>BH2=3,24
<=>BH=1,8(cm)
Ta có:BC=BH+CH
=>CH=BC-BH=5-1,8=3,2(cm)
Vậy BC=5cm;AH=2,4cm;BH=1,8cm;CH=3,2cm
Áp dụng định lý Pytago vào tam giác ABC
\(BC=\sqrt{3^2+4^2}=5\)
ÁP dụng hệ thức lượng vào tam giác ABC
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow AH=\sqrt{\dfrac{1}{\dfrac{1}{3^2}+\dfrac{1}{4^2}}}=\dfrac{12}{5}\)
\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)\(\Rightarrow\widehat{B}\simeq53,1^o\)
Bài 2 :
Áp dụng hệ thức lượng của \(\Delta\)ta có :
+) AH\(^2\)= BH.HC
AH\(^2\)= 1.4 = 4 (cm)
AH = 2 (cm)
+) BC = BH + HC = 1 + 4 =5 (cm)
+) Lại có : AB\(^2\)= BH.BC
AB\(^2\) = 1.5 = 5(cm)
AB = \(\sqrt{ }\)5(cm )
+) Mà AC\(^2\) = CH.BC
AC\(^2\)= 4.5 = 20(cm)
AC = \(\sqrt{ }\)20 (cm)
b) Áp dung hệ thức lượng trong \(\Delta\)ABC ta có :
+) AH\(^2\)= BH.CH
AH2 = 4.CH
25 = 4.CH
=》 CH = 6,25 (cm)
+) BC = BH + HC = 4 + 6,25 = 10,25 (cm)
+) AB2 = BH.BC
AB2 = 4.10,25 = 41 (cm)
=》 AB \(\approx\)6,4 (cm)
AC2 =CH.BC
AC2 = 6,25.10,25 = 64,0625(cm)
=》 AC \(\approx\)8,004(cm)
Xét ΔBAC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay \(BC=\sqrt{41}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}HB\cdot BC=AB^2\\HC\cdot BC=AC^2\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}HB=\dfrac{16\sqrt{41}}{41}\left(cm\right)\\HC=\dfrac{25\sqrt{41}}{41}\left(cm\right)\\AH=\dfrac{20\sqrt{41}}{41}\left(cm\right)\end{matrix}\right.\)
Đlí pytago:BC2=AB2+AC2
BC2=42+52
BC=\(\sqrt{16+25}\)
BC=6,4
ĐLÍ 1 :AB2=BH.BC
BH=42:6,4
BH=2,5
ĐLÍ 1: AC2=HC.BC
HC=52:6,4
HC=3,9
ĐLÍ 2 :AH2=BH.HC
AH2=2,5.3,9
AH\(=\sqrt{9,75}=3,1\)
b) ΔAHB vuông tại H
Áp dụng định lý Pi-ta-go ta có: AH2+ BH2= AB2
⇒ 42 + 22 = AB2
⇒AB2 = 20
⇒AB = √20
ΔAHC vuông tại H
Áp dụng định lý Pi-ta-go, ta có: AH2 + HC2 = AC2
⇒42 +82 = AC2
⇒ AC2 = 80
⇒AC = √80
b)Vì AB>AC(√20>√80)
⇒góc C lớn hơn góc B (quan hệ giữa góc và cạnh đối diện)
SABCD = ( A B + C D ) A H 2
=> AH = 2 S A B C D A B + C D = 2.54 4 + 8 = 9 (cm)
Đáp án cần chọn là: D
Áp dụng định lí Py-ta-go vào tam giác AHB vuông tại H có:
\(AB^2=AH^2+BH^2\)
=>\(BH^2=AB^2-AH^2=\left(8,5\right)^2-4^2=72.25-16=56.25\)
=> \(BH=\sqrt{56,25}=7.5\)
Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H có:
\(AC^{2^{ }}=AH^2+HC^2\)
=>\(HC^2=AC^2-AH^2=5^2-4^2=25-16=9\)
=>\(HC=\sqrt{9}=3\)
Vì H thuộc BC => BC=HB+HC=7.5+3=10.5
Chu vi tam giác ABC là: AB+AC+BC=8,5+5+10,5=24(cm)
Vậy chu vi tam giác ABC là 24 cm
Kết quả không phải là 24 cm. Vì H nằm ngoài đoạn thẳng BC.