Cho a/b=b/c=c/d và a+b+c khác 0
tính A =a.b^2.c^2016/a^2019; B=(19a+b+2100c)^2018/(a+219b)^2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{d}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=d\end{cases}}\Rightarrow a=b=c=d\)
Ta có: \(VT=a.b^{19}.c^{1999}=d.d^{19}.d^{1999}=d^{2019}=VP\)(đpcm)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow ab+bc+ca=0\)
\(a+b+c=\sqrt{2019}\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=2019\)
\(\Rightarrow a^2+b^2+c^2=2019\) ( vì \(ab+bc+ca=0\))
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\\ A=a^2+b^2+c^2\\ \Leftrightarrow A=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\\ \Leftrightarrow A=\left(\sqrt{2019}\right)^2-2\cdot0=2019\)
Lời giải:
Áp dụng TCDTSBN:
$\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}=\frac{c+d+a-b}{b}=\frac{d+a+b-c}{c}$
$=\frac{a+b+c-d+b+c+d-a+c+d+a-b+d+a+b-c}{d+a+b+c}$
$=\frac{2(a+b+c+d)}{a+b+c+d}=2$
$\Rightarrow a+b+c-d=2d; b+c+d-a=2a; c+d+a-b=2b; d+a+b-c=2c$
$\Rightarrow a+b+c=3d; b+c+d=3a; c+d+a=3b; d+a+b=3c$
Khi đó:
\(P=\frac{a+b+c}{a}.\frac{b+c+d}{b}.\frac{c+d+a}{c}.\frac{a+b+d}{d}\\ =\frac{3d}{a}.\frac{3a}{b}.\frac{3b}{c}.\frac{3c}{d}=81\)