K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

\(n^2+2n-x^2-x=0.\)
\(\Delta'_n=1+x^2+x\ne k^2\left(k\in Z\right)\Rightarrow dpcm\)

22 tháng 4 2020

Ta có : 

\(x\left(x+1\right)=n\left(n+2\right)\)

\(\Leftrightarrow x^2+x=n^2+2n\)

\(\Leftrightarrow x^2+x+1=n^2+2n+1\)

\(\Leftrightarrow x^2+x+1=\left(n+1\right)^2\)

Vì n là số nguyên cho trước thì \(\left(n+1\right)^2\) là một số chính phương 

\(x>0\), Ta có : \(x^2+x+1>x^2\)

                             \(x^2+x+1< x^2+x+1+x=x^2+2x+1\)

                                                                                            \(=\left(x+1\right)^2\)

\(\Rightarrow x^2< x^2+x+1< \left(x+1\right)^2\)

Hay \(x^2< \left(n+1\right)^2< \left(x+1\right)^2\)

=> Vô lí do không thể có số chính phương nào tồn tại giữa hai số chính phương liên tiếp 

Vậy không thể tồn tại số nguyên dương x 

18 tháng 11 2023

bài 2 bn nên cộng 3 cái lại

mà năm nay bn lên đại học r đúng k ???

18 tháng 4 2019

Giả sử tồn tại ..

Ta có   (-1)^x+199y luôn = 1 hoặc -1 là số lẻ => 6+  (-1)^x+199y lẻ mà 2006 chẵn => (x+199y)(x-199y) chẵn => x+199y hoặc x-199y chia hết cho 2(1)

Lại có x+199y+x-199y=2x chẵn kết hợp (1) => x+199y và x-199y đều chia hết cho 2 => (-1) ^ x+199y =1 => 6+  (-1) ^ x+199y =7 

mà 2006 không chia hết cho 7 =>2006 o chia hết 6+  (-1) ^ x+199y (vô lý) 

Vậy giả sử sai nên o tồn tại