Cho hình chữ nhật ABCD có điểm E nằm trên cạnh CD sao cho \(\widehat {A{\rm{E}}B} = {78^o};\widehat {EBC} = {39^o}\). Tính số đo của \(\widehat {BEC}\) và \(\widehat {E{\rm{A}}B}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng j: Đoạn thẳng [B, A] Đoạn thẳng k: Đoạn thẳng [C, D] Đoạn thẳng l: Đoạn thẳng [A, D] Đoạn thẳng m: Đoạn thẳng [E, A] Đoạn thẳng q: Đoạn thẳng [A, F] Đoạn thẳng t: Đoạn thẳng [N, F] Đoạn thẳng a: Đoạn thẳng [E, N] Đoạn thẳng b: Đoạn thẳng [D, F] Đoạn thẳng c: Đoạn thẳng [A, N] Đoạn thẳng d: Đoạn thẳng [E, F] Đoạn thẳng e: Đoạn thẳng [A, C] Đoạn thẳng f_1: Đoạn thẳng [C, O] B = (-2.54, 2.94) B = (-2.54, 2.94) B = (-2.54, 2.94) C = (4.78, 2.96) C = (4.78, 2.96) C = (4.78, 2.96) Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm D: Giao điểm của h, i Điểm D: Giao điểm của h, i Điểm D: Giao điểm của h, i Điểm E: Điểm trên f Điểm E: Điểm trên f Điểm E: Điểm trên f Điểm F: Giao điểm của n, p Điểm F: Giao điểm của n, p Điểm F: Giao điểm của n, p Điểm N: Giao điểm của r, s Điểm N: Giao điểm của r, s Điểm N: Giao điểm của r, s Điểm O: Giao điểm của c, d Điểm O: Giao điểm của c, d Điểm O: Giao điểm của c, d
Gọi O là tâm hình chữ nhật AENF, khi đó OA = OE = OF
Xét tam giác vuông FCE có CO là trung tuyến ứng với cạnh huyền nên OE = OF = OC
Vậy thì OA = OC hay O luôn thuộc trung trực của AC.
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
khi vẽ hình ta sẽ thấy chiều dài AB 36 cm , chiều rộng 18 cm , M là trung điểm chiều rộng nên BM = 9cm , MC = 9 cm
DN gấp 2 lần CN nên AB là chiều dài nên DC cũng là chiều dài dài 36 cm
độ dài DN là :
36 : ( 2 + 1 ) x 2 = 24 ( cm )
Độ dài NC là :
36 - 24 = 12 ( cm )
vậy ta biết chiều cao tứ giác là 12 cm , độ dài đáy là 18 cm = chiều rộng
diện tích tứ giác ABCD là :
18 x 12 = 216 ( cm2)
A B C D E F G
Gọi AE cắt CD tại G. Dễ thấy \(\frac{AE}{AG}=\frac{BE}{BC}=\frac{3}{4},FG=DC\), do đó:
\(\frac{1}{2}AE.AF.\sin\widehat{EAF}=S_{AEF}=\frac{3}{4}S_{AFG}=\frac{3}{4}S_{ADC}=\frac{3}{8}AB.BC\)
Suy ra \(\sin\widehat{EAF}=\frac{3}{4}.\frac{AB.BC}{AE.AF}=\frac{3}{4}.\frac{xy}{\sqrt{x^2+\frac{9}{16}y^2}.\sqrt{y^2+\frac{1}{9}x^2}}\) \(\left(x=AB,y=BC\right)\)
\(\le\frac{3}{4}.\frac{xy}{xy+\frac{1}{4}xy}=\frac{3}{5}\) (BĐT Bunhiacopxki)
Vì \(0^0< \widehat{EAF}< 90^0\) nên \(max\widehat{EAF}=arc\sin\left(\frac{3}{5}\right)\approx36,87^0\)
Dấu "=" xảy ra khi và chỉ khi \(\frac{x}{y}=\frac{\frac{3}{4}y}{\frac{1}{3}x}\Leftrightarrow\frac{x}{y}=\frac{3}{2}\)hay \(\frac{AB}{BC}=\frac{3}{2}\Rightarrow\frac{AB}{AC}=\frac{3\sqrt{13}}{13}\)
A B C D F K M E
Sửa đề: Chứng minh góc EFM = 900 ?
Có DF = CK => DF + FK = CK + FK => DK = CF. Xét \(\Delta\)EKF có ^EKF = 900
=> ME2 = KE2 + KM2 (ĐL Pytagoras). Tương tự: KE2 = DE2 + DK2 ; KM2 = CK2 + CM2
Do đó ME2 = DE2 + DK2 + CK2 + CM2. Thay CK = DF, DK = CF ta được:
ME2 = (DE2 + DF2) + (CF2 + CM2) = FE2 + FM2 (ĐL Pytagoras)
Áp dụng ĐL Pytagoras đảo vào \(\Delta\)EMF suy ra \(\Delta\)EMF vuông tại F => ^EFM = 900.
Cho mình sửa dòng thứ 2: "Xét \(\Delta\)EKM có ^EKM = 900 "
A B C D O H
Gọi O là giao điểm của 2 đường chéo AC và BD
Nên O là trung điểm của AC và BD
\(\Delta AEC\)vuông tại E có EO là đường trung tuyến ứng với cạnh huyền AC
\(\Rightarrow EO=\frac{1}{2}AC=\frac{1}{2}BD\)
\(\Delta BED\)có trung tuyến \(EO=\frac{1}{2}BD\)
\(\Rightarrow\Delta BED\)vuông tại E \(\Rightarrow\widehat{BED}\)vuông
1/2 S.ABCD là 48 : 2 = 24 ( cm2 )
S.AMB là 24 : 2 = 12 (cm2)
S.AED là 24 : 3 x 2 = 16 (cm2)
S.MEC = 1/3 S.ABM vì BM = MC và EC = 1/3 AB = 12 : 3 = 4 (cm2)
S.AME là : 48 - 16 -12 -4 =4 16 (cm2)
Xét tam giác BEC vuông tại C có:
\(\begin{array}{l}\widehat {BEC} + \widehat {EBC} + \widehat {BCE} = {180^o}\\ \Rightarrow \widehat {BEC} + {39^o} + {30^o} = {180^o}\\ \Rightarrow \widehat {BEC} = {180^o} - {39^o} - {30^o} = {51^o}\end{array}\)
Mà: \(\begin{array}{l}\widehat {EBA} + \widehat {EBC} = {90^o}\\ \Rightarrow \widehat {EBA} = {90^o} - \widehat {EBC} = {90^o} - {39^o} = {51^o}\end{array}\)
Xét tam giác AEB có:
\(\begin{array}{l}\widehat {A{\rm{E}}B} + \widehat {E{\rm{A}}B} + \widehat {EBA} = {180^o}\\ \Rightarrow \widehat {E{\rm{A}}B} = {180^o} - \widehat {A{\rm{E}}B} - \widehat {EBA} = {180^o} - {78^o} - {51^o} = {51^o}\end{array}\)