Cho \(\Delta ABC\) có \(\widehat{A}=50^0;\widehat{B}:\widehat{C}=2:3\). So sánh các cạnh của \(\Delta ABC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC có :\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=180\(^0\)( tổng 3 góc trong tam giác)
80\(^0\)+50\(^0\)+\(\widehat{C}\)=180\(^0\)
\(\widehat{C}\)=180\(^0\)-(80\(^0\)+50\(^0\))
\(\widehat{C}\)=50\(^0\)
\(\Rightarrow\)tam giác ABC cân tại A
b) Ta có DE//BC
\(\Rightarrow\)\(\widehat{D}\)=\(\widehat{B}\)
\(\Rightarrow\)\(\widehat{E}\)=\(\widehat{C}\)
Mà \(\widehat{B}\)=\(\widehat{C}\)
\(\Rightarrow\)\(\widehat{D}\)=\(\widehat{E}\)
Vậy: tam giác ADE cân tại A
Ta có tam giác ABC : gA + gB + gC =180 độ (vì kề bù)
Nên gC =180 - gB -gC =180-50-80=50 độ
Vì gC=gB mà chúng ở góc đáy
Vậy tam giác abc là tam giác cân
b, Vì BC//DE
Nên gD=gB =50 độ vì đồng vị ;gC=gE=50độ vì đồng vị (1)
Từ 1 ta thấy gD =gE
Mà chúng ở góc đáy
Vậy tam giác ADE là tam giác cân
chú ý g là góc
\(\widehat{B}+\widehat{C}=140^0\)
\(\Leftrightarrow4\cdot\widehat{C}=140^0\)
\(\Leftrightarrow\widehat{C}=35^0\)
hay \(\widehat{B}=105^0\)
Vậy: ΔABC tù
Xét tam giác ABC có:
\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 50^\circ + 60^\circ + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 70^\circ \end{array}\)
Xét tam giác ABC và tam giác MNP có:
\(\begin{array}{l}\widehat B = \widehat N = 60^\circ \\\widehat C = \widehat P = 70^\circ \end{array}\)
\( \Rightarrow \Delta ABC \backsim \Delta MNP\) (g-g).
Từ đề bài, tam giác ABC cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-50^0}{2}=65^0\)
50 o A B C
Bài làm
Vì AB = AC ( giả thiết )
=> Tam giác ABC là tam giác cân tại A
=> B = C ( hai cạnh ở đáy )
Xét tam giác ABC cân tại A
Ta có: A + B + C = 180o ( định lí tổng ba góc của tam giác )
hay 50o+B+C=180o
=> B + C = 180o - 50o
=> B + C = 130o
Mà B = C
=> B = C = 130o/2=65o
Vậy B = C = 65o
# Chúc bạn học tốt #
=>
Xét \(\Delta KEH\) có \(\widehat{K}+\widehat{E}+\widehat{H}=180^0\)
\(\Leftrightarrow\widehat{K}+60^0+50^0=180^0\)
\(\Rightarrow\widehat{K}=180^0-\left(60^0+50^0\right)=70^0\)
Vì KD là tia phân giác của \(\widehat{EKH}\)
\(\Rightarrow\widehat{EKH}=\widehat{DKH}=\frac{\widehat{EKH}}{2}=\frac{70}{2}=35^0\)
* Vì \(\widehat{EDK}\) là góc ngoài đỉnh D của \(\Delta KDH\)
\(\Rightarrow\widehat{EDK}=\widehat{DKH}+\widehat{H}\)
= 350+500 = 850
* Vì \(\widehat{KDH}\) là góc ngoài của đỉnh D của \(\Delta KDE\) nên
\(\widehat{KDH}=\widehat{K}+\widehat{D}\)
= 350 +600 = 950
Vậy góc EDK=850
Góc KDH= 950
@Phạm Hoàng Giang
@trần anh tú