K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Cho hình bình hành ABCD, M là trung điểm cạnh CD, N là trung điểm đoạn BM. Chứngminh rằng : \(\overrightarrow{AN}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\).                                                                                    Câu 2. Trong mặt phẳng Oxy, cho tam giác ABC biết A (-1;-3), B (0;2), C (2;1)a) Tìm tọa độ điểm M trên Ox sao cho tam giác AMB vuông tại M.b) Tìm tọa độ hình chiếu của A lên BC.             ...
Đọc tiếp

Câu 1: Cho hình bình hành ABCD, M là trung điểm cạnh CD, N là trung điểm đoạn BM. Chứngminh rằng : \(\overrightarrow{AN}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\).                                                                                    Câu 2Trong mặt phẳng Oxy, cho tam giác ABC biết A (-1;-3), B (0;2), C (2;1)a) Tìm tọa độ điểm M trên Ox sao cho tam giác AMB vuông tại M.b) Tìm tọa độ hình chiếu của A lên BC.                Câu 3. Cho tam giác ABCđều cạnh a , có AH là đường trung tuyến. Tính \(\left|\overrightarrow{AC}+\overrightarrow{AH}\right|\).            Câu 4. Một trang trại cần thuê xe vận chuyển 450 con lợn và 35 tấn cám. Nơi cho thuê xe chỉ có 12 xe lớn và 10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí thuê xe là thấp nhất?                                              Câu 5. Để kéo đường dây điện băng qua một cái hồ hình chữ nhậtvới độ dài AB =140m , AD = 50m. Người ta dự định làm cột điện liên tiếp thẳng hàng và cách đều nhau. Cột thứ nhất nằm trên bờ AB và cách đỉnh A một khoảng bằng 10m. Cột thứ năm nằm trên bờ CD và cách đỉnh C một khoảng bằng 30m. Tính khoảng cách từ cột thứ tư đến bờ AD.

1

Câu 3:

\(\left|\overrightarrow{AC}+\overrightarrow{AH}\right|=\sqrt{AC^2+AH^2+2\cdot AC\cdot AH\cdot cos30}\)

\(=\sqrt{a^2+\left(\dfrac{a\sqrt{3}}{2}\right)^2+2\cdot a\cdot\dfrac{a\sqrt{3}}{2}\cdot\dfrac{\sqrt{3}}{2}}\)

\(=\sqrt{a^2+\dfrac{3}{4}a^2+\dfrac{3a^2}{4}}=\dfrac{\sqrt{7}}{2}a\)

a: Xét tứ giác AMCN có

AM//NC

AM=CN

=>AMCN là hình bình hành

b:

AM+MB=AB

CN+ND=CD
mà AM=CN và AB=CD

nên MB=ND

Xét tứ giác DMBN có

BM//DN

BM=DN

=>DMBN là hình bình hành

16 tháng 1 2021

Tham khảo:

Cho hình thang vuông ABCD

NV
21 tháng 2 2021

\(BM=2MA\Rightarrow\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}\)\(AN=3NC\Rightarrow\overrightarrow{AN}=\dfrac{3}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\)

Do đó:

\(\overrightarrow{MN}.\overrightarrow{DN}=\left(\overrightarrow{MA}+\overrightarrow{AN}\right)\left(\overrightarrow{DA}+\overrightarrow{AN}\right)\)

\(=\left(-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\right)\left(-\overrightarrow{AD}+\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\right)\)

\(=\left(\dfrac{5}{12}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\right)\left(\dfrac{3}{4}\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{AD}\right)\)

\(=\dfrac{5}{16}AB^2-\dfrac{3}{16}AD^2=\dfrac{1}{8}AB^2=\dfrac{1}{8}\) (chú ý rằng \(\overrightarrow{AB}.\overrightarrow{AD}=0\) và \(AB=AD=1\))

16 tháng 11 2021

Vì AE=CF và AE//CF (AB//CD do hbh ABCD) nên AECF là hbh

\(\left\{{}\begin{matrix}AE=CF\\AM=CN\\\widehat{A}=\widehat{C}\left(hbh.ABCD\right)\end{matrix}\right.\Rightarrow\Delta AME=\Delta CNF\left(c.g.c\right)\\ \Rightarrow ME=NF\left(4\right)\\ \left\{{}\begin{matrix}AE=CF\\AB=CD\end{matrix}\right.\Rightarrow AB-AE=CD-CF\Rightarrow BE=DF\left(1\right)\\ \left\{{}\begin{matrix}AM=CN\\AD=BC\end{matrix}\right.\Rightarrow AD-AM=CN-BC\Rightarrow DM=BN\left(2\right)\)

ABCD là hbh nên \(\widehat{B}=\widehat{D}\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\Delta DMN=\Delta BFE\left(c.g.c\right)\\ \Rightarrow MN=EF\left(5\right)\)

(4)(5) suy ra MENF là hbh

 

27 tháng 10 2023

Bài 1:

Gọi K là trung điểm của BC

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔCAB có

O,K lần lượt là trung điểm của CA,CB

=>OK là đường trung bình

=>OK//AB và \(OK=\dfrac{AB}{2}\)

=>\(\overrightarrow{OK}=\dfrac{\overrightarrow{AB}}{2}\)

=>\(\overrightarrow{AB}=2\cdot\overrightarrow{OK}\)

Xét ΔOBC có OK là đường trung tuyến

nên \(\overrightarrow{OB}+\overrightarrow{OC}=2\cdot\overrightarrow{OK}\)

=>\(\overrightarrow{AB}=\overrightarrow{OB}+\overrightarrow{OC}\)

=>M trùng với B

Bài 2:

Xét ΔABC có

M,P lần lượt là trung điểm của AB,AC

=>MP là đường trung bình của ΔABC

=>MP//BC và MP=BC/2

=>MP=CN

mà MP//NC

nên MPCN là hình bình hành

=>\(\overrightarrow{MP}=\overrightarrow{NC}\)

=>\(\overrightarrow{MP}=-\overrightarrow{CN}\)

=>\(\overrightarrow{MP}+\overrightarrow{CN}=\overrightarrow{0}\)

mà \(\overrightarrow{MK}+\overrightarrow{CN}=\overrightarrow{0}\)

nên K trùng với P

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Từ M kẻ đường thẳng song song với AB, cắt AD tại E.

Khi đó tứ giác ABME là hình bình hành.

Do đó: \(\overrightarrow {AM}  = \overrightarrow {AB}  + \overrightarrow {AE} \).

Dễ thấy: \(AE = BM = \frac{1}{2}BC = \frac{1}{2}AD\)

\( \Rightarrow \overrightarrow {AE}  = \frac{1}{2}\overrightarrow {AD} \)

\( \Rightarrow \overrightarrow {AM}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \)

Vậy \(\overrightarrow {AM}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \)

Chú ý khi giải

+) Dựng hình hình hành sao cho đường chéo là vecto cần biểu thị, 2 cạnh của nó song song với giá của hai vecto đang biểu thị theo.