K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2015

Ta có:

\(\frac{x}{3}=\frac{-y}{7}\Rightarrow x=\frac{-3y}{7}\)

Thay vào: x . y, ta được:

\(x\cdot y=\frac{-3y}{7}\cdot y=\frac{-3y^2}{7}=-189\)

=> -3y2 = -189 * 7 = -1323

=> y2 = -1323 : (-3) = 441

=> y = 21  hoặc  y = -21

x . y = -189

=> x = -189 : 21 = -9   hoặc    x = -189 : (-21) = 9

mà x > y

Vậy x = 9; y = -21

22 tháng 1 2016

134

      tích đi rồi tích lại cho

22 tháng 3 2019

\(H=x^2+2y^2+\frac{1}{x}+\frac{24}{y}=x^2+1+2y^2+8+\frac{1}{x}+\frac{24}{y}-9\)

Vì x ; y > 0 , áp dụng BĐT Cauchy , ta có :

\(H\ge2x+8y+\frac{1}{x}+\frac{24}{y}-9=x+2y+x+\frac{1}{x}+6\left(y+\frac{4}{y}\right)-9\)

\(\ge5+2+6.4-9=22\)

Dấu " = " xảy ra \(\Leftrightarrow x=1;y=2\)

29 tháng 1 2020

Áp dụng BĐT Cauchy - Schwarz dạng phân thức, ta có :

\(P=\)\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{\left(x+y+z\right)^2}{2x+2y+2z}=\frac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=\frac{2^2}{2.2}=1\)

Dấu " = ' xảy ra \(\Leftrightarrow\)\(x=y=z\)

Vậy : \(MinP=1\)\(\Leftrightarrow x=y=z\)

29 tháng 3 2016

Mik mới lớp 8,,,

29 tháng 3 2016

GTNN của A là 22

18 tháng 9 2016

\(\frac{x}{x^2-yz+2013}+\frac{y}{y^2-zx+2013}+\frac{z}{z^2-xy+2013}\)

\(=\frac{1}{\frac{x^2-yz+2013}{x}}+\frac{1}{\frac{y^2-zx+2013}{y}}+\frac{1}{\frac{z^2-xy+2013}{z}}\)

\(=\frac{1}{x+3y+3z+\frac{2yz}{x}}+\frac{1}{y+3z+3x+\frac{2xz}{y}}+\frac{1}{z+3x+3y+\frac{2xy}{z}}\)

\(\ge\frac{9}{7\left(x+y+z\right)+2xyz\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}\ge\frac{9}{7\left(x+y+z\right)+2xyz\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}=\)

\(=\frac{9}{7\left(x+y+z\right)+2xyz.\frac{1}{xyz}.\left(x+y+z\right)}=\frac{9}{9\left(x+y+z\right)}=\frac{1}{x+y+z}\)

Ta có đpcm

bó tay rùi bạn !!!! ~_~

65756578687696453724756545345363637635754754695622534434