Cho \(x+y\ne0\)và \(\frac{x^2+y^2}{x+y}=\frac{5}{3};\frac{x^4+y^4}{x^3+y^3}=\frac{17}{9}\). Tính giá trị của biểu thức U=\(\frac{x^6+y^6}{x^5+y^5}\)
Giúp mình với đang ôn hsg thấy bài này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-2-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{x}{y}+\frac{y}{x}-3\right)+3\)
Ta có: \(\left(\frac{x}{y}+\frac{y}{x}\right)\ge2\Rightarrow\left(\frac{x}{y}+\frac{y}{x}-3\right)\ge-1\Rightarrow\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{x}{y}+\frac{y}{x}-3\right)\ge-2\)
\(\Rightarrow\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{x}{y}+\frac{y}{x}-3\right)+3\ge1\)
\(\Rightarrow P\ge1\)
Vậy \(Min_P=1\)
ta có: \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)
\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}\) (1)
=> \(\frac{a}{\left(x^2-yz\right)}.\frac{a}{\left(x^2-yz\right)}=\frac{b}{y^2-xz}.\frac{c}{z^2-xy}=\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}\)
a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] =>
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2)
Thực hiện tương tự ta cũng có
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3)
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4)
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.
Đặt \(\frac{x}{4}=\frac{y}{7}\) = k => x = 4k; y = 7k ( k khác 0)
Thay vào C ta được: \(C=\frac{\left(1+\sqrt{3}\right)\left(4k\right)^2.7k-\left(2-\sqrt{5}\right).4k.\left(7k\right)^2}{\left(4k\right)^3+\left(7k\right)^3}=\frac{\left(112.\left(1+\sqrt{3}\right)-196.\left(2-\sqrt{5}\right)\right).k^3}{407k^3}\)
\(C=\frac{112+112\sqrt{3}-392+196\sqrt{5}}{407}=\frac{112\sqrt{3} +196\sqrt{5}-280}{407}\)