K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 12 2020

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\Rightarrow\left\{{}\begin{matrix}bc=-ab-ac\\ab=-bc-ac\\ac=-ab-bc\end{matrix}\right.\)

\(M=\dfrac{1}{a^2+bc-ab-ac}+\dfrac{1}{b^2+ac-ab-bc}+\dfrac{1}{c^2+ab-bc-ac}\)

\(=\dfrac{1}{a\left(a-b\right)-c\left(a-b\right)}+\dfrac{1}{b\left(b-c\right)-a\left(b-c\right)}+\dfrac{1}{c\left(c-a\right)-b\left(c-a\right)}\)

\(=\dfrac{1}{\left(a-b\right)\left(a-c\right)}-\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{b-c-\left(a-c\right)+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)

27 tháng 11 2017

Ta có : 1/M=a2+2bc+b2+2ac+c2+2ab

=(a+b+c)2 ➝ M=1/(a+b+c)2

mik nghĩ là thế

11 tháng 12 2017

Có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=0\)

\(\Leftrightarrow ab+bc+ac=0\)

\(1\Leftrightarrow a^2+2bc=a^2+bc-ab-ac\)

\(\Leftrightarrow a^2+2bc=a\left(a-b\right)-c\left(a-b\right)\)

\(\Leftrightarrow a^2+2bc=\left(a-b\right)\left(b-c\right)\)

\(2\Leftrightarrow b^2+2ac=b^2+ac-ab-bc\)

\(\Leftrightarrow b^2+2ac=b\left(b-c\right)-a\left(b-c\right)\)

\(\Leftrightarrow b^2+2ac=\left(b-c\right)\left(b-a\right)\)

\(3.c^2+2ab=c^2+ab-bc-ac\)

\(\Leftrightarrow c^2+2ab=c\left(c-b\right)-a\left(c-b\right)\)

\(\Leftrightarrow c^2+2ab=\left(c-a\right)\left(c-b\right)\)

\(\Rightarrow M=\dfrac{1}{\left(a-b\right)\left(a-c\right)}+\dfrac{1}{\left(b-a\right)\left(b-c\right)}+\dfrac{1}{\left(c-a\right)\left(c-b\right)}\)

\(\Rightarrow M=\dfrac{1}{\left(a-b\right)\left(a-c\right)}-\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(a-c\right)\left(b-c\right)}\)

\(\Rightarrow M=\dfrac{b-c-a+c+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(\Rightarrow M=0\)

20 tháng 12 2019

cho mình hỏi bạn biết làm chưa nếu rồi thì giúp mình được không ạ mình ko biết làm

7 tháng 2 2021

undefined

13 tháng 1 2021

Ta có kết quả tổng quát hơn như sau:

Cho $a,b,c \neq 0$ thỏa mãn $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0.$

Chứng minh rằng $$S={\frac {k{a}^{2}-k-1}{{a}^{2}+2\,bc}}+{\frac {{b}^{2}k-k-1}{2\,ac+{b}^{2}}}+{\frac {{c}^{2}k-k-1}{2\,ab+{c}^{2}}}=k$$

29 tháng 3 2017

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

\(\Leftrightarrow ab+bc+ca=0\)

\(C=\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}\)

\(=\dfrac{a^2}{a^2+bc-ac-ab}+\dfrac{b^2}{b^2+ac-ba-bc}+\dfrac{c^2}{c^2+ab-ca-cb}\)

\(=\dfrac{a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}\)

\(=-\left(\dfrac{a^2}{\left(a-b\right)\left(c-a\right)}+\dfrac{b^2}{\left(a-b\right)\left(b-c\right)}+\dfrac{c^2}{\left(c-a\right)\left(b-c\right)}\right)\)

\(=-\left(\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)\)

\(=-\left(\dfrac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)=1\)

16 tháng 10 2018

Áp dụng BĐT Cauchy - Schwarz vào bài toán , ta có :

\(Q=\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=\dfrac{9}{\left(a+b+c\right)^2}=\dfrac{9}{1^2}=9\) Dấu " = " xảy ra khi : \(\dfrac{1}{a^2+2ab}=\dfrac{1}{b^2+2ac}=\dfrac{1}{c^2+2ab}\Leftrightarrow a=b=c=\dfrac{1}{3}\)

\(\Rightarrow Q_{Min}=9\Leftrightarrow a=b=c=\dfrac{1}{3}\)

9 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\)

\(\ge\dfrac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}\)

\(=\dfrac{3^2}{\left(a+b+c\right)^2}=\dfrac{9}{\left(a+b+c\right)^2}=9\left(a+b+c\le1\right)\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)