Cho biểu thức A = \(\left(\dfrac{2\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}-3}\right)\): \(\dfrac{3}{\sqrt{x}-3}\) với x \(\ge0;\) \(x\ne9\)
1) Rút gọn biểu thức A
2) Tìm x để A = \(\dfrac{5}{6}\)
3) Tìm giá trị nhỏ nhất của biểu thức A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(D=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
\(=\dfrac{-3\sqrt{x}+3}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}-1}=\dfrac{-3}{\sqrt{x}+3}\)
b) \(D=-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{4}\)
\(\Leftrightarrow12>\sqrt{x}+3\Leftrightarrow\sqrt{x}< 9\)
\(\Leftrightarrow0\le x< 81\) và \(x\ne9\)
a) D=\(\left(\dfrac{2\sqrt{x}.\left(\sqrt{x}-3\right)+\sqrt{x}.\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}\right)\) \(:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(\Leftrightarrow D=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}\) \(.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(\Leftrightarrow D=\dfrac{-3-3\sqrt{x}}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}+1}\)
\(\Leftrightarrow D=\dfrac{-3.\left(\sqrt{x}+1\right)}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}+1}\)
\(\Leftrightarrow D=\dfrac{-3}{\sqrt{x}+3}\)
b) Để D\(< \dfrac{-1}{4}\) \(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}< \dfrac{-1}{4}\)
\(\Leftrightarrow12>\sqrt{x}+3\Leftrightarrow9>\sqrt{x}\Leftrightarrow81>x\ge0\)
4) Ta có: \(P=\dfrac{x-2}{x+2\sqrt{x}}-\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
5) Ta có: \(B=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)
=1-x
Câu 1:
a) ĐKXĐ: \(x>0;x\ne9\)
Với x=36 (thỏa mãn ĐKXĐ) thì A có giá trị :
\(A=\dfrac{\sqrt{36}+2}{1+\sqrt{36}}=\dfrac{6+2}{1+6}=\dfrac{8}{7}\)
b) Ta có:
\(B=\left(\dfrac{2\sqrt{x}}{x-\sqrt{x}-6}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}=\dfrac{x+4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)
c) Ta có:
\(P=A\cdot B=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{\sqrt{x}+4}{\sqrt{x}+1}=1+\dfrac{3}{\sqrt{x}+1}\)
Vì x là số nguyên lớn hơn 0 nên
\(x\ge1\Rightarrow\sqrt{x}\ge1\Rightarrow\sqrt{x}+1\ge2>0\Rightarrow P\le1+\dfrac{3}{2}=\dfrac{5}{2}\)
Dấu bằng xảy ra khi x=1;
Gọi số sản phẩm dự định của xí nghiệp A và B lần lượt là x,y \(\left(x,y\in N;0< x,y< 720\right)\)
Vì tổng sản phẩm dự định là 720 nên ta có phương trình: \(x+y=720\left(1\right)\)
Vì thực tế , xí nghiệp A hoàn thành vượt mức 12% nên số sản phẩm xí nghiệp A thực tế là : \(112\%x=\dfrac{28}{25}x\)
Xí nghiệp B hoàn thành vượt mức 10% nên số sản phẩm xí nghiệp B thực tế là : \(110\%y=\dfrac{11}{10}y\)
Vì tổng số sản phẩm thực tế là 800 nên ta có phương trình: \(\dfrac{28}{25}x+\dfrac{11}{10}y=800\Leftrightarrow56x+55y=40000\left(2\right)\)
Từ (1)(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=720\\56x+55y=40000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=720\\55\cdot720+x=40000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=400\\y=320\end{matrix}\right.\left(t.m\right)\)
Vậy số sản phẩm 2 xí nghiệp làm theo kế hoạch lần lượt là 400 và 320 sản phẩm
a: \(A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{2\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)
\(=\dfrac{-6}{\sqrt{x}+3}\)
b: Để A<-1/2 thì A+1/2<0
\(\Leftrightarrow-\dfrac{6}{\sqrt{x}+3}+\dfrac{1}{2}< 0\)
\(\Leftrightarrow-12+\sqrt{x}+3< 0\)
=>0<x<81 và x<>9
a: Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)
\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b: Ta có: \(\left(\sqrt{x}+1\right)\cdot A=x\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\cdot\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=x\)
\(\Leftrightarrow x-2\sqrt{x}+1=0\)
\(\Leftrightarrow x=1\left(loại\right)\)
a: \(A=\dfrac{\sqrt{3}+1}{\sqrt{3}+1}+\sqrt{5}+3-3-\sqrt{5}=1\)
b: \(B=\dfrac{-\sqrt{x}-3+x-3\sqrt{x}-x-9}{x-9}=\dfrac{-4\sqrt{x}-12}{x-9}=\dfrac{-4}{\sqrt{x}-3}\)
Để B>1 thì \(\dfrac{-4-\sqrt{x}+3}{\sqrt{x}-3}>0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay 0<x<9
a:
Sửa đề: \(C=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
\(C=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{x-9}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-3\sqrt{x}-x-9}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}}{2\sqrt{x}+4}\)
\(=-\dfrac{3\sqrt{x}}{2\sqrt{x}+4}\)
b: Để C<-1 thì C+1<0
=>-3 căn x+2 căn x+4<0
=>-căn x<-4
=>x>16
a: \(=-4+2\sqrt{5}-\sqrt{5}+2+\sqrt{5}=2\sqrt{5}-2\)
b: \(B=\dfrac{2\sqrt{x}+4+6\sqrt{x}-3-2\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}}{6\sqrt{x}+4}\)
\(=\dfrac{\left(6\sqrt{x}+1\right)\cdot\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\left(6\sqrt{x}+4\right)}\)
\(a,A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ A=\dfrac{x-6\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
1) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x-9\ne0\\\sqrt{x}-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)\(A=\left(\dfrac{2\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}-3}\right):\dfrac{3}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{3}=\dfrac{3\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}=\dfrac{3\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+3\right)}\)2) Để A=\(\dfrac{5}{6}\) thì \(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+3\right)}=\dfrac{5}{6}\Leftrightarrow\left(\sqrt{x}+1\right)6=\left(\sqrt{x}+3\right)5\Leftrightarrow6\sqrt{x}+6=5\sqrt{x}+15\Leftrightarrow\sqrt{x}=9\Leftrightarrow x=81\)
1. Ta có:
\(A=\left(\dfrac{2\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}-3}\right):\dfrac{3}{\sqrt{x}-3}\)
\(=\dfrac{2\sqrt{x}.\left(\sqrt{x}-3\right)}{3\left(x-9\right)}+\dfrac{1}{3}\)
\(=\dfrac{2x-6\sqrt{x}}{3\left(x-9\right)}+\dfrac{x-9}{3\left(x-9\right)}\)
\(=\dfrac{3x-6\sqrt{x}-9}{3x-27}\)
\(=\dfrac{x-2\sqrt{x}-3}{x-9}\)