Cho \(x^2-y=a;\) \(y^2-z=b;\) \(z^2-x=c\)(a, b, c là hằng số)
C/m: \(A=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\) không phụ thuộc vào x, y, z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
A=\(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy=a^2-2b\)
\(B=x^3+y^3=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(C=x^5+y^5=\left(x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=\left(x+y\right)^5-5xy\left(x^3+2xy^2+2x^2y+y^3\right)=\left(x+y\right)^5-5xy\left(x^3+3xy^2+3x^2y+y^3-xy^2-x^2y\right)\)
\(=\left(x+y\right)^5-5xy\left(\left(x+y\right)^3-xy\left(x+y\right)\right)=a^5-5b\left(a^3-ab\right)\)
a) Ta có: A = (x + y)3 + 2x2 + 4xy + 2y2
A = 73 + 2(x2 + 2xy + y2)
A = 343 + 2(x + y)2
A = 343 + 2. 72
A = 343 + 98 = 441
b) B = (x - y)3 - x2 + 2xy - y2
=> B = (-5)3 - (x2 - 2xy + y2)
=> B = -125 - (x - y)2
=> B = -125 - (-5)2
=> B = -125 - 25 = -150
1) Cho x+y=2 và x^2+y^2=10. Tính x^3+y^3. Giải
(x+y)^2=x^2+y^2+2xy => xy= -3
x^3+y^3=(x+y)^3-3xy(x+y) = 26
2) Ta có: x^3+y^3 = (x+y)(x^2-xy+y^2) (1)
(x+y)^2=a^2
=> x^2 +2xy +y^2=a^2
=> b+2xy=a^2
=> xy=\(\frac{a^2-b}{2}\)
Thay (1) vào đó ta có:
x^3+y^3= (x+y)(x^2-xy+y^2) = a(b-\(\frac{a^2-b}{2}\)) = \(a\left(\frac{2b-a^2+b}{2}\right)=a.\frac{3b-a^2}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\left(10-xy\right)\)
Ta có: \(x^2+y^2=\left(x+y\right)^2-2xy=2^2-2xy=4-2xy=10\Rightarrow2xy=-6\Rightarrow xy=-3\)
Vậy: \(x^3+y^3=2\left(10+3\right)=2.13=26\)
a) Theo đầu bài ta có:
\(x+y=2\Rightarrow x=2-y\)
\(x^2+y^2=10\)
\(\Rightarrow\left(2-y\right)^2+y^2=10\)
\(\Rightarrow4+y^2-4y+y^2=10\)
\(\Rightarrow2y^2-4y=6\)
\(\Rightarrow2\left(y^2-2y\right)=6\)
\(\Rightarrow y\left(y-2\right)=3\)
Mà \(\hept{\begin{cases}y-\left(y-2\right)=2\\y+\left(y-2\right)=k\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{k+2}{2}\\y-2=\frac{k-2}{2}\end{cases}}}\)( với k là hằng số )
\(\Rightarrow y\left(y-2\right)=\frac{k+2}{2}\cdot\frac{k-2}{2}\)
\(\Rightarrow\frac{\left(k+2\right)\left(k-2\right)}{4}=3\)
\(\Rightarrow k^2-4=12\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=4;-4\)
- Nếu k = 4 thì:
\(\Rightarrow\hept{\begin{cases}y=\frac{k+2}{2}=3\\x=2-y=-1\end{cases}\Rightarrow x^3+y^3=-1+27=26}\)
- Nếu k = -4 thì:
\(\Rightarrow\hept{\begin{cases}y=\frac{k+2}{2}=-1\\x=2-y=3\end{cases}\Rightarrow x^3+y^3=27+-1=26}\)
Vậy x3 + y3 = 26
a, \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+2xy+y^2=4\Rightarrow10+2xy=4\Rightarrow xy=-3\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2.13=26\)
vậy............
b, \(x+y=a\Rightarrow\left(x+y\right)^2=a^2\)
\(\Rightarrow x^2+2xy+y^2=a^2\)
\(\Rightarrow xy=\frac{a^2-b}{2}\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)
Vậy....
a: \(\dfrac{xy}{x^2+y^2}=\dfrac{5}{8}\)
=>\(\dfrac{xy}{5}=\dfrac{x^2+y^2}{8}=k\)
=>\(xy=5k;x^2+y^2=8k\)
\(A=\dfrac{8k-2\cdot5k}{8k+2\cdot5k}=\dfrac{-2}{18}=\dfrac{-1}{9}\)
b: Đặt \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\)
=>x=a*k; y=b*k; z=c*k
\(B=\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{\left(a\cdot ak+b\cdot bk+c\cdot ck\right)^2}\)
\(=\dfrac{k^2\cdot\left(a^2+b^2+c^2\right)}{k^2\left(a^2+b^2+c^2\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath
Trả lời :
Tham khảo link này : https://olm.vn/hoi-dap/detail/6401290031.html
- Hok tốt !
^_^