K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

a/

*Cách 1:

Ta có: ΔABC cân tại A

=> AC = AB

Và: \(\widehat{ABC}=\widehat{ACB}\)

Hay: \(\widehat{ABH}=\widehat{ACH}\)

Xét 2 tam giác vuông ΔAHB và ΔAHC có:

AB = AC (cmt)

\(\widehat{ABH}=\widehat{ACH}\) (cmt)

Do đó: ΔAHB = ΔAHC (c.h - g.n)

*Cách 2:

Xét ΔAHB và ΔAHC có:

AB = AC (ΔABC cân tại A)

AH: cạnh chung

=> ΔAHB = ΔAHC (c.h - c.g.v)

b) Có: ΔAHB = ΔAHC (câu a)

=> HB = HC (2 cạnh tương ứng)

Và: \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)

c) Xét 2 tam giác vuông ΔEBH và ΔFCH ta có:

Cạnh huyền HB = HC (câu b)

\(\widehat{B}=\widehat{C}\) (ΔABC cân tại A)

=> ΔEBH = ΔFCH (c.h - g.n)

d) Sửa đề: EF // BC

Có: ΔEBH = ΔFCH (câu c)

=> EB = FC (2 cạnh tương ứng)

Có: \(\left\{{}\begin{matrix}AE+BE=AB\\AF+FC=AC\end{matrix}\right.\)

Mà: EB = FC (cmt) và AB = AC (ΔABC cân tại A)

=> AE = AF

=> ΔAEF cân tại A

=> \(\widehat{AEF}=\frac{180^0-\widehat{BAC}}{2}\) (1)

Có: ΔABC cân tại A

=> \(\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\) (2)

Từ (1) và (2) => \(\widehat{ABC}=\widehat{AEF}\)

Mà 2 góc này lại là 2 góc đồng vị

=> EF // BC

c) Xét ΔKAN vuông tại K và ΔQAN vuông tại Q có 

AN chung

\(\widehat{KAN}=\widehat{QAN}\)

Do đó: ΔKAN=ΔQAN(cạnh huyền-góc nhọn)

Suy ra: AK=AQ(hai cạnh tương ứng) 

a) Xét ΔAHB và ΔAHC có 

AB=AC(ΔBAC cân tại A)

AH chung

BH=CH(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-c-c)

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay AH\(\perp\)BC tại H

b) Xét ΔADM và ΔBHM có 

\(\widehat{DAM}=\widehat{HBM}\)(hai góc so le trong, AD//BH)

MA=MB(M là trung điểm của AB)

\(\widehat{AMD}=\widehat{BMH}\)(hai góc đối đỉnh)

Do đó: ΔADM=ΔBHM(g-c-g)

Suy ra: AD=BH(hai cạnh tương ứng)

mà AD=12cm(gt)

nên BH=12cm

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AH^2=20^2-12^2=256\)

hay AH=16(cm)

26 tháng 7 2021

Thanks ạ :33

Cho Δ ABC cân tại A (góc A nhọn,AB>AC). Gọi H là trung điểm của BC.                                                                 a, Chứng minh Δ AHB= ΔAHC và AH vuông góc với BC tại H                                                                             b, Gọi M là trung điểm của AB. Qua A kẻ đường thẳng song song với BC, cắt tia HM tại D. Giả sử AB=20cm,AD=12cm.Chứng minh AD=AH. Tính độ dài đoạn thẳng AH.                             ...
Đọc tiếp

Cho Δ ABC cân tại A (góc A nhọn,AB>AC). Gọi H là trung điểm của BC.                                                                 

a, Chứng minh Δ AHB= ΔAHC và AH vuông góc với BC tại H                                                                             

b, Gọi M là trung điểm của AB. Qua A kẻ đường thẳng song song với BC, cắt tia HM tại D. Giả sử AB=20cm,AD=12cm.Chứng minh AD=AH. Tính độ dài đoạn thẳng AH.                                                                   

 c,Tia phân giác của góc BAD cắt tai CB tại N. Kẻ NK ⊥AD tại K. NQ ⊥AB tại Q. Chứng minh AQ=AK và ANQ=35độ + 1/4 BAC.                                                                                                                                                                                                                                           d, CD cắt AB tại S. Chứng minh BC<3 ×AS.                                                                                                                                                                                                                                                      (vẽ hình cho em với ạ giúp em ạ)

0

a: Xet ΔAHN và ΔCHM có

AH=CH

góc HAN=góc HCM

AN=CM

=>ΔAHN=ΔCHM

b: Xet ΔAHM và ΔBHN co

AH=BH

góc HAM=góc HBN

AM=BN

=>ΔAHM=ΔBHN

a: Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC

nên HB<HC

b: Xét ΔAHB vuông tại H và ΔAHM vuông tạiH có

AH chung

HB=HM

=>ΔAHB=ΔAHM

=>AB=AM

mà góc ABM=60 độ

nên ΔABM đều

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

29 tháng 8 2021

câu c đâu bạn

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔABH=ΔACH

b: góc DAH=góc HAC=góc DHA

=>ΔDAH cân tại D

=>góc DHB=góc DBH

=>DH=DB=DA
=>D là trung điểm của AB

=>DH=1/2AB

12 tháng 5 2023

mình đg cần câu c bạn biết làm câu c không