Cho Δ ABC cân tại A. Kẻ AH ⊥ BC. Chứng minh rằng:
a) Δ AHB = Δ AHC (giải bằng 2 cách ).
b) HB = HC ; \(\widehat{BAH}\) = \(\widehat{CAH}\)
c) Từ H kẻ HE ⊥ AB ; HF ⊥ AC tìm các cặp tam giác vuông bằng nhau trên hình vẽ.
d) EH//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Xét ΔKAN vuông tại K và ΔQAN vuông tại Q có
AN chung
\(\widehat{KAN}=\widehat{QAN}\)
Do đó: ΔKAN=ΔQAN(cạnh huyền-góc nhọn)
Suy ra: AK=AQ(hai cạnh tương ứng)
a) Xét ΔAHB và ΔAHC có
AB=AC(ΔBAC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH\(\perp\)BC tại H
b) Xét ΔADM và ΔBHM có
\(\widehat{DAM}=\widehat{HBM}\)(hai góc so le trong, AD//BH)
MA=MB(M là trung điểm của AB)
\(\widehat{AMD}=\widehat{BMH}\)(hai góc đối đỉnh)
Do đó: ΔADM=ΔBHM(g-c-g)
Suy ra: AD=BH(hai cạnh tương ứng)
mà AD=12cm(gt)
nên BH=12cm
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AH^2=20^2-12^2=256\)
hay AH=16(cm)
a: Xet ΔAHN và ΔCHM có
AH=CH
góc HAN=góc HCM
AN=CM
=>ΔAHN=ΔCHM
b: Xet ΔAHM và ΔBHN co
AH=BH
góc HAM=góc HBN
AM=BN
=>ΔAHM=ΔBHN
a: Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB<HC
b: Xét ΔAHB vuông tại H và ΔAHM vuông tạiH có
AH chung
HB=HM
=>ΔAHB=ΔAHM
=>AB=AM
mà góc ABM=60 độ
nên ΔABM đều
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:
\(AE\cdot AB=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:
\(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Do đó: ΔAEF\(\sim\)ΔACB
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔABH=ΔACH
b: góc DAH=góc HAC=góc DHA
=>ΔDAH cân tại D
=>góc DHB=góc DBH
=>DH=DB=DA
=>D là trung điểm của AB
=>DH=1/2AB
a/
*Cách 1:
Ta có: ΔABC cân tại A
=> AC = AB
Và: \(\widehat{ABC}=\widehat{ACB}\)
Hay: \(\widehat{ABH}=\widehat{ACH}\)
Xét 2 tam giác vuông ΔAHB và ΔAHC có:
AB = AC (cmt)
\(\widehat{ABH}=\widehat{ACH}\) (cmt)
Do đó: ΔAHB = ΔAHC (c.h - g.n)
*Cách 2:
Xét ΔAHB và ΔAHC có:
AB = AC (ΔABC cân tại A)
AH: cạnh chung
=> ΔAHB = ΔAHC (c.h - c.g.v)
b) Có: ΔAHB = ΔAHC (câu a)
=> HB = HC (2 cạnh tương ứng)
Và: \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
c) Xét 2 tam giác vuông ΔEBH và ΔFCH ta có:
Cạnh huyền HB = HC (câu b)
\(\widehat{B}=\widehat{C}\) (ΔABC cân tại A)
=> ΔEBH = ΔFCH (c.h - g.n)
d) Sửa đề: EF // BC
Có: ΔEBH = ΔFCH (câu c)
=> EB = FC (2 cạnh tương ứng)
Có: \(\left\{{}\begin{matrix}AE+BE=AB\\AF+FC=AC\end{matrix}\right.\)
Mà: EB = FC (cmt) và AB = AC (ΔABC cân tại A)
=> AE = AF
=> ΔAEF cân tại A
=> \(\widehat{AEF}=\frac{180^0-\widehat{BAC}}{2}\) (1)
Có: ΔABC cân tại A
=> \(\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\) (2)
Từ (1) và (2) => \(\widehat{ABC}=\widehat{AEF}\)
Mà 2 góc này lại là 2 góc đồng vị
=> EF // BC