Tính tổng các nghiệm trên (0;\(\pi\)) của phương trình:
\(\dfrac{1}{Cosx}+\dfrac{1}{Sin2x}=\dfrac{1}{Sin4x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
sin2x + 4sinx - 2cosx - 4 = 0
⇔ cos x + 2 2 sin x - 2 = 0 ⇔ sin x = 1 ⇔ x = π 2 + k 2 π 0 ≤ π 2 + k 2 π ≤ 100 ⇔ - 0 , 25 ≤ k ≤ 49 , 75 ⇒ k = 0 ; 1 ; 2 ; . . . ; 49 x i : π 2 ; π 2 + 2 π ; . . . ; π 2 + 49 . 2 π ⇒ S = π 2 + π 2 + 49 . 2 π 2 . 50 = 2475 π
ĐKXĐ: x≠ \(k.\dfrac{\pi}{4}\) với k ∈ Z
Pt đã cho tương đương
\(\left\{{}\begin{matrix}sin4x.sin2x+sin4x.cosx=sin2x.cosx\\x\ne k\dfrac{\pi}{4}\end{matrix}\right.\)
Do x≠ \(k.\dfrac{\pi}{4}\) với k ∈ Z nên sin2x ≠ 0, chia cả 2 vế cho sin2x ta được
sin4x + 2cos2x.cosx = cosx
⇔ sin4x = cosx (1 - 2cos2x)
⇔ 4sinx.cosx.cos2x = cosx (1 - 2cos2x)
Do x≠ \(k.\dfrac{\pi}{4}\) với k ∈ Z nên cosx ≠ 0, chia cả 2 vế cho cosx ta được
4sinx.cos2x = 1 - 2cos2x
⇔ 4.sinx(1 - 2sin2x) = 1 - 2. (1- 2sin2x)
Đến đây tự giải kết hợp điều kiện nhé