cho a,b,c là các số khác 0 thỏa mãn;
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
tính giá trị của biểu thức : \(\frac{\left(a+b\right).\left(b+c\right).\left(c+a\right)}{a.b.c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}=\dfrac{2\left(a+b+c\right)}{6}=\dfrac{a+b+c}{3}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{a+b+c}{3}\\ \Rightarrow3\left(a+b+c\right)=3\left(a+b\right)\\ \Rightarrow3\left(a+b\right)+3c=3\left(a+b\right)\\ \Rightarrow3c=0\\ \Rightarrow c=0\)
Vậy \(P=\dfrac{a+b-2019c}{a+b+2018c}=\dfrac{a+b}{a+b}=1\)
vì a+c =9 nên để tổng abc+cba là số có 3 chử số thì tổng hàng chục b+b <10 nên b<5. vậy tập hợp A có 5 giá trị là 0,1,2,3,4
Theo đầu bài ta có:
abc + cba
= ( 100a + 10b + c ) + ( 100c + 10b + a )
= ( 100a + a ) + ( c + 100c ) + ( 10b + 10b )
= 101a + 101c + 20b
= 101 ( a + c ) + 20b
Do a + c = 9 nên:
= 101 * 9 + 20b
= 909 + 20b
- Do abc + cba là 1 số có 3 chữ số nên abc + cba < 1000 => 909 + 20b < 1000 => 20b < 91 => b < 4,55
- Do A là tập hợp các giá trị của chữ số b thỏa mãn điều kiện trên nên A = { 0 ; 1 ; 2 ; 3 ; 4 }
Vậy tập hợp A có 5 phần tử.