Tính tổng của A, B và C biết:
AA+BB= CBC
Giúp mình vs ạ!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-9}{11}< \dfrac{7}{a}< \dfrac{-9}{13}\\ \Rightarrow\dfrac{63}{-77}< \dfrac{63}{9a}< \dfrac{63}{-91}\\ \Rightarrow-77>9a>-91\)
Với \(a\inℤ\Rightarrow9a⋮9\)
Do đó \(9a\in\left\{-81;-90\right\}\)
\(\Rightarrow a\in\left\{-9;-10\right\}\)
Vậy số hữu tỉ thỏa mãn là: \(\dfrac{7}{-9};\dfrac{7}{-10}\)
\(D=1-\dfrac{2}{5\cdot10}-\dfrac{2}{10\cdot15}-\dfrac{2}{15\cdot20}-...-\dfrac{2}{2020\cdot2025}\)
\(D=1-\left(\dfrac{2}{5\cdot10}+\dfrac{2}{10\cdot15}+\dfrac{2}{15\cdot20}+...+\dfrac{2}{2020\cdot2025}\right)\)
Đặt \(A=\dfrac{2}{5\cdot10}+\dfrac{2}{10\cdot15}+\dfrac{2}{15\cdot20}+...+\dfrac{2}{2020\cdot2025}\)
\(A=\dfrac{2}{5}\cdot\left(\dfrac{1}{5}-\dfrac{1}{10}\right)+\dfrac{2}{5}\cdot\left(\dfrac{1}{10}-\dfrac{1}{15}\right)+\dfrac{2}{5}\cdot\left(\dfrac{1}{15}-\dfrac{1}{20}\right)+...+\dfrac{2}{5}\cdot\left(\dfrac{1}{2020}-\dfrac{1}{2025}\right)\)
\(A=\dfrac{2}{5}\cdot\left(\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{20}+...+\dfrac{1}{2020}-\dfrac{1}{2025}\right)\)
\(A=\dfrac{2}{5}\cdot\left(\dfrac{1}{5}-\dfrac{1}{2025}\right)\)
\(A=\dfrac{2}{5}\cdot\dfrac{404}{2025}\)
\(A=\dfrac{808}{10125}\)
Thay vào D được:
\(D=1-\dfrac{808}{10125}\)
\(D=\dfrac{9317}{10125}\)
Vậy \(D=\dfrac{9317}{10125}\)
Gọi phân số cần tìm có dạng là \(\dfrac{x}{15}\) \(\left(x\inℤ\right)\)
Theo đề bài ta có:
\(-\dfrac{3}{5}< \dfrac{x}{15}< -\dfrac{1}{6}\)
\(\Rightarrow-\dfrac{18}{30}< \dfrac{2x}{30}< -\dfrac{5}{30}\)
\(\Rightarrow-18< 2x< -5\)
\(\Rightarrow-9< x< -\dfrac{5}{2}\)
\(\Rightarrow x\in\left\{-8,-7,-6,-5,-4,-3\right\}\)
Suy ra các phân số cần tìm là \(-\dfrac{8}{15};-\dfrac{7}{15};-\dfrac{6}{15};-\dfrac{5}{15};-\dfrac{4}{15};-\dfrac{3}{15}\)
Vậy có 6 phân số thỏa mãn đề bài
phân số thoả mãn đề bài có dạng: \(\dfrac{x}{15}\); \(x\) \(\in\) Z
Theo bài ra ta có:
\(\dfrac{-3}{5}\) < \(\dfrac{x}{15}\) < \(\dfrac{-1}{6}\)
\(\dfrac{-3\times6}{5\times6}\) < \(\dfrac{x\times2}{15\times2}\) < \(\dfrac{-1\times5}{6\times5}\)
\(\dfrac{-18}{30}\) < \(\dfrac{x\times2}{30}\) < \(\dfrac{-5}{30}\)
30 x \(\dfrac{-18}{30}\) < \(\dfrac{x\times2}{30}\) < \(\dfrac{-5}{30}\) x 30
- 18 < \(x\times\) 2 < - 5
- 18 < \(x\) \(\times\) 2 < - 5
-18 : 2 < \(x\) < - 5 : 2
- 9 < \(x\) < - 2\(\dfrac{1}{2}\)
Vì \(x\in\) Z nên \(x\) \(\in\) {- 8; - 7; - 6; -5; - 4; - 3}
Vậy có 6 phân số thoả mãn yêu cầu đề bài.
h) Mình sửa đề vế phải là -1/27 nhé
\(\left(2x+1\right)^3=-\dfrac{1}{27}=\left(-\dfrac{1}{3}\right)^3\\ \Rightarrow2x+1=-\dfrac{1}{3}\\ \Rightarrow2x=-\dfrac{1}{3}-1=-\dfrac{4}{3}\\ \Rightarrow x=-\dfrac{4}{3}:2=-\dfrac{2}{3}\)
i) \(\left|2x-\dfrac{1}{3}\right|-\dfrac{2}{5}=0\Rightarrow\left|2x-\dfrac{1}{3}\right|=\dfrac{2}{5}\\ \Rightarrow\left[{}\begin{matrix}2x-\dfrac{1}{3}=\dfrac{2}{5}\\2x-\dfrac{1}{3}=-\dfrac{2}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=\dfrac{11}{15}\\2x=-\dfrac{1}{15}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{30}\\x=-\dfrac{1}{30}\end{matrix}\right.\)
d) \(\left|2x-1\right|=\left|x-2\right|\Rightarrow\left[{}\begin{matrix}2x-1=x-2\\2x-1=-\left(x-2\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-x=1-2\\2x-1=-x+2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\2x+x=1+2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\3x=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
e) \(\left(x-\dfrac{2}{3}\right)+1=2x-\dfrac{5}{4}\Rightarrow x-\dfrac{2}{3}+1=2x-\dfrac{5}{4}\\ \Rightarrow2x-x=\dfrac{5}{4}-\dfrac{2}{3}+1\\ \Rightarrow x=\dfrac{19}{12}\)
f) \(\left|2x-1\right|-2=3\Rightarrow\left|2x-1\right|=5\\ \Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Ý bạn là sao nhỉ?
Sao cho số thực a,b,c thỏa mãn a=b=c rồi lại chứng minh a=b=c
a: Xét ΔDNP và ΔEPN có
DN=EP
\(\widehat{DNP}=\widehat{EPN}\)
NP chung
Do đó: ΔDNP=ΔEPN
b: ΔDNP=ΔEPN
=>DP=EN
Ta có: MD+DN=MN
ME+EP=MP
mà DN=EP và MN=MP
nên MD=ME
Xét ΔMEN và ΔMDP có
ME=MD
EN=DP
MN=MP
Do đó: ΔMEN=ΔMDP
c: Ta có: ΔDNP=ΔEPN
=>\(\widehat{DPN}=\widehat{ENP}\)
=>\(\widehat{KNP}=\widehat{KPN}\)
=>ΔKNP cân tại K
d: Xét ΔMNK và ΔMPK có
MN=MP
NK=PK
MK chung
Do đó: ΔMNK=ΔMPK
=>\(\widehat{NMK}=\widehat{PMK}\)
=>MK là phân giác của góc NMP
e: Ta có: ΔMNP cân tại M
mà MH là đường trung tuyến
nên MH là phân giác của góc NMP
mà MK là phân giác của góc NMP
nên M,H,K thẳng hàng
f: Xét ΔMNP có \(\dfrac{MD}{MN}=\dfrac{ME}{MP}\)
nên DE//NP
AA + BB = CBC
11 x (A + B) = CBC
⇒ B = C x 2
Ta xét các trường hợp:
CBC = 1211 = 2422 = 3633 = 4844
- Nếu CBC = 121 thì B = 2; A = 9 và C = 1 (chọn)
Với các trường hợp khác, do đều được tạo bởi các số quá lớn dẫn đến A là số có 2 chữ số nên chỉ có 1 trường hợp nêu trên.