Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC=căn 2^2+3^2=căn 13(cm)
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
HA/HC=HB/HA
=>ΔHAB đồng dạng với ΔHCA
=>góc HAB=góc HCA
=>góc HAB+góc HAC=90 độ
=>góc BAC=90 độ
=>ΔABC vuông tại A
a. Ta có : tam giac AHB vuông tại H
nên AH2 =AB2 - HB2 (1)
tam giác AHC vuông tại H
nên AH2=AC2 -HC2 (2)
Từ (1) và (2) suy ra :
AB2 -HB2= AC2- HC2=AH2
suy ra :AB2+HC2=AC2+HB2
b.Ta có :AB2+DC2=AH2+HB2+HC2+HD2=(HB2+HD2)+(AH2+HC2)
=AC2+DB2
suy ra : AB2+DC=AC2+DB2
a, xét tam giác CMD và tam giác BMA có : AM = MD (gt)
MB = MC do M là trung điểm của BC (Gt)
góc CMD = góc AMB (đối đỉnh )
=> tam giác CMD = tam giác BMA (c - g - c)
=> góc ABM = góc DCM (định nghĩa)
b, góc ABM = góc DCM (Câu a) mà 2 góc này so le trong
=> CD // AB (đl)
mà CA _|_ AB do tam giác ABC vuông tại A (gt)
=> CA _|_ CD (dl)
=> góc ACD = 90 (đn)
=> tam giác ACD vuông tại C (đn)
c, xét tam giác ABC và tam giác CDA có : AC chung
góc ABC = góc CDA = 90
AB = CD do tam giác CMD = tam giác BMA (câu a)
=> tam giác ABC = tam giác CDA (2cgv)
=> AD = CB (đn)
M là trung điểm của CB => CM = 1/2BC
CM = MA
do tam giác CMD = tam giác BMA (Câu a)
=> MA = 1/2BC
d,
Ta có: \(\Delta\)ABH vuông tại H
=> \(AB^2=AH^2+BH^2\) ( định lí pi ta go ) (1)
\(\Delta\)CHD vuông tại H
=> \(CD^2=DH^2+CH^2\) ( định lí pi-ta-go) (2)
\(\Delta\)AHC vuông tại H
=> \(AC^2=AH^2+HC^2\)
\(\Delta\)BHD vuông tại H
=> \(BD^2=BH^2+DH^2\)
Từ (1) ; (2)
=> \(AB^2+CD^2=AH^2+HB^2+DH^2+CH^2\)
\(=\left(AH^2+CH^2\right)+\left(HB^2+DH^2\right)=AC^2+BD^2\)
Vậy \(AB^2+CD^2=AC^2+BD^2\)