K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AC=căn 2^2+3^2=căn 13(cm)

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

HA/HC=HB/HA

=>ΔHAB đồng dạng với ΔHCA

=>góc HAB=góc HCA

=>góc HAB+góc HAC=90 độ

=>góc BAC=90 độ

=>ΔABC vuông tại A

3 tháng 3 2016

a. Ta có : tam giac AHB vuông tại H

nên AH=AB2 - HB2      (1)

               tam giác AHC vuông tại H 

nên AH2=AC2 -HC2        (2)

Từ (1) và (2) suy ra :

AB2 -HB2= AC2- HC2=AH2

suy ra :AB2+HC2=AC2+HB2

b.Ta có :AB2+DC2=AH2+HB2+HC2+HD2=(HB2+HD2)+(AH2+HC2)

                                                                               =AC2+DB2

suy ra : AB2+DC=AC2+DB2

5 tháng 10 2019

2. Câu hỏi của ๛Ąкเйą ℌ๏àйǥ Ŧỷツ - Toán lớp 7 - Học toán với OnlineMath

17 tháng 3 2019

A B C H M D

a, xét tam giác CMD và tam giác BMA có : AM = MD (gt)

MB = MC do M là trung điểm của BC (Gt)

góc CMD = góc AMB (đối đỉnh )

=> tam giác CMD = tam giác BMA (c - g - c)

=> góc ABM = góc DCM (định nghĩa)

b, góc ABM = góc DCM (Câu a) mà 2 góc này so le trong

=>  CD // AB (đl)

mà CA _|_ AB do tam giác ABC vuông tại A (gt)

=> CA _|_ CD (dl)

=> góc ACD = 90 (đn)

=> tam giác ACD vuông tại C (đn)

c,  xét tam giác ABC và tam giác CDA có : AC chung

góc ABC = góc CDA = 90

AB = CD do tam giác CMD = tam giác BMA (câu a)

=> tam giác ABC = tam giác CDA (2cgv)

=> AD = CB (đn)

M là trung điểm của CB =>  CM = 1/2BC 

CM = MA

 do tam giác CMD = tam giác BMA (Câu a)

=> MA = 1/2BC 

d, 

20 tháng 4 2020

Ta có: \(\Delta\)ABH vuông tại H 

=> \(AB^2=AH^2+BH^2\) ( định  lí pi ta go )  (1)

\(\Delta\)CHD vuông tại H 

=> \(CD^2=DH^2+CH^2\) ( định lí pi-ta-go) (2)

\(\Delta\)AHC vuông tại H 

=> \(AC^2=AH^2+HC^2\)

\(\Delta\)BHD vuông tại H 

=> \(BD^2=BH^2+DH^2\)

Từ (1) ; (2) 

=> \(AB^2+CD^2=AH^2+HB^2+DH^2+CH^2\)

\(=\left(AH^2+CH^2\right)+\left(HB^2+DH^2\right)=AC^2+BD^2\)

Vậy \(AB^2+CD^2=AC^2+BD^2\)