Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) aaaaaa = a . 111111 = a .15873 . 7 = ( a . 15873 ) . 7 chia hết cho 7
Vậy aaaaaa luôc chia hết cho 7
b)abcabc = abc . 1001 = abc . 91.11=( abc . 91 ) . 11 chia hết cho 11
Vậy abcabc bao giờ cũng chia hết cho 11
abc abc=abc.1000+abc=abc.(1000+1)
=abc.1001=abc.91.11
vì 11 chia hết cho 11=>abc.91.11 chia hết cho 11
vậy số abcabc lúc nào cũng chia hết cho 11
\(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.91.11\)
\(\Rightarrow\overline{abcabc}⋮11\)
Vậy số có dạng \(\overline{abcabc}\)bao giờ cũng chia hết cho 11
abc abc=abc .1000 + abc = abc . ( 1000+1 )
= abc .1001 = abc . 91 . 11
vì 11 chia hết cho 11 => abc . 91 . 11 chia hết cho 11
Vậy : số abcabc lúc nào cũng chia hết cho 11
Ta có: abc abc= abc.1000+abc= abc.(1000+1)=abc.1001=abc.91.11
Vì: 11 chia hết cho 11 => abc.91.11 chia hết cho 11
Vậy số có dạng abcabc chia hết cho 11
abc abc=abc.1000+abc=abc.(1000+1)
=abc.1001=abc.91.11
vì 11 chia hết cho 11=>abc.91.11 chia hết cho 11
vậy số abcabc lúc nào cũng chia hết cho 11
chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11 ( chẳng hạn : 328328 chia hết cho 11 ) - Tìm với Google
a) aa = a.11 chia hết cho 11
b) aaa = 100.a+10 a+a = 111.a chia hết cho 37 (vì 111 chia hết cho 37)
c) aaaaaa = 111111.a chia hết cho 37 (vì 111111 chia hết cho 37)
d) abcabc = 100000a+10000b+1000c+100a+10b+c = 100100.a+10010b+1001c
ta thấy 100100.a chia hết cho 11 ( vì 100100 chia hết cho 11)
10010b chia hết cho 11 ( vì 10010 chia hết cho 11)
1001c chia hết cho 11 ( vì 1001 chia hết cho 11)
Vậy 100100.a+10010b+1001c chia hết cho 11 hay abcabc chia hết cho 11
e) C aaaaaa = 111111a chia hết cho 7 ( 111111 chia hết cho 7)
a)aaa=a*111 mà 111=3*37 chia hết cho 37
b)aaa aaa=a*111 111 mà 111 111=3*7*11*13*37 chia hết cho 7
c)abc abc=abc*1001 mà 1001=7*11*13 chia hết cho 11.
Ta co:abcabc = abc . 100 + abc = abc . 1001
Mã 1001 chia hết cho các số tự nhiên: 7, 11, 91, 143
=> abc . 1001 chia hết cho 7,11,91,143
=> dcpcm
abcabc = abc000 + abc
= abc.1000 + abc.1
= abc.(1000 + 1)
= abc . 1001
= abc.7.11.13
Vì abcabc chia hết cho 7;11;13
<=> abcabc có ít nhất 3 ước là các thừa số nguyên tố
Ta có : abcabc = abcx1001
= abc x 91 x 11
Có : 11 chia hết cho 11
Nên abc x 91 x 11 chia hết cho 11
Nên abcabc chia hết cho 11
Vậy số có dạng abcabc chia hết cho 11
abcabc= 1000abc+abc=abc(1000+1)=1001abc
Vì 1001 chia hết cho 11 nên 1001abc chia hết cho 11(đpcm)